Attached and Detached Closures in Actors

Elias Castegren® Dave Clarke Kiko Fernandez-Reyes
KTH Royal Institute of Technology Information Technology Information Technology
Sweden Uppsala University Uppsala University
eliasca@kth.se Sweden Sweden

dave.clarke@it.uu.se

Tobias Wrigstad
Information Technology
Uppsala University
Sweden
tobias.wrigstad@it.uu.se

Abstract

Expressive actor models combine aspects of functional pro-
gramming into the pure actor model enriched with futures.
Such functional features include first-class closures which
can be passed between actors and chained on futures. Com-
bined with mutable objects, this opens the door to race con-
ditions. In some situations, closures may not be evaluated by
the actor that created them yet may access fields or objects
owned by that actor. In other situations, closures may be
safely fired off to run as a separate task.

This paper discusses the problem of who can safely eval-
uate a closure to avoid race conditions, and presents the
current solution to the problem adopted by the Encore lan-
guage. The solution integrates with Encore’s capability type
system, which influences whether a closure is attached and
must be evaluated by the creating actor, or whether it can
be detached and evaluated independently of its creator.

Encore’s current solution to this problem is not final or op-
timal. We conclude by discussing a number of open problems
related to dealing with closures in the actor model.

CCS Concepts « Computing methodologies — Paral-
lel programming languages; Concurrent programming
languages; Concurrent computing methodologies;

Keywords closures, parallel programming, concurrent pro-
gramming, type systems

“Work done while at Uppsala University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
AGERE 18, November 5, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6066-1/18/11...$15.00
https://doi.org/10.1145/3281366.3281371

54

kiko.fernandez@it.uu.se

Albert Mingkun Yang
Information Technology
Uppsala University
Sweden
albert.yang@it.uu.se

ACM Reference Format:

Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Tobias Wrig-
stad, and Albert Mingkun Yang. 2018. Attached and Detached Clos-
ures in Actors. In Proceedings of the 8th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decent-
ralized Control (AGERE ’18), November 5, 2018, Boston, MA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3281366.
3281371

1 Introduction

The actor model has been around for decades [1, 3, 4], but has
recently seen renewed interest as it offers a solid program-
ming model for both distributed and concurrent systems.
The feature of actors responsible for its renewed popularity
is its concurrency model, which is based on isolating mutable
state within actors and commmunicating between actors us-
ing message passing. Actors thus offer encapsulation and
data race freedom, while remaining close enough in spirit to
the object-oriented paradigm. The actor model is a language
abstraction while threads are an implementation detail.

Modern actor-based programming languages, like Ambi-
entTalk [10], Scala (via Akka) [14], Pony [11], Encore [5],
ABS [15], Creol [16], Proactive [6], and deviate from the
pure actor model by offering language features that origin-
ated in other paradigms, including sharing of immutable
objects, algebraic data types, futures and/or promises, and
higher-order and anonymous functions (closures).

The Encore [5] programming language combines many
of these features in a single language and offers a capability
system for programmers to express their intentions with
respect to how data is transferred, shared and interacted
with. The capability system ensures statically that actor’s
data are manipulated in a data race-free fashion. Because
closures capture variables from the lexical scope in which
they are defined, they are particularly subtle to deal with in a
context where concurrent operations are frequent. Closures
can be passed between actors or chained on futures, meaning
that they will be run when the future is eventually fulfilled. In
both cases, the closure’s creator and the eventual evaluator(s)
of the closure may not be the same actor, which introduces

https://doi.org/10.1145/3281366.3281371
https://doi.org/10.1145/3281366.3281371
https://doi.org/10.1145/3281366.3281371

AGERE ’18, November 5, 2018, Boston, MA, USA

the opportunity for data races through variables and objects
captured from the original scope.

Encore addresses this problem by distinguishing two kinds
of closures: attached closures, which must be run by the actor
who created them, and detached closures, which can be run
by any actor. Encore’s capability type system guarantees
that a closure which modifies state owned by an actor will
always be run by the actor itself (as an attached closure), and
that running a detached closure will never lead to data races.

This paper focuses on Encore (Section 2), though the ideas
are applicable to other actor languages. Problems associated
with closures in an actor-based programming languages are
first reviewed (Section 3), before giving Encore’s approach
to these problems in two parts: changes to the runtime (Sec-
tion 4) and support from Encore’s capability-based type sys-
tem (Section 5). Some remaning open problems are discussed
(Sections 6), and the paper concludes by discussing how clos-
ures are treated in similar languages (Section 7).

2 Encore Primer

This section gives an overview of the Encore actor model
and its capability-based type system.

2.1 Overview

Encore [5] is an actor language in the active object tradi-
tion [17, 22, 23]. Programs are made up of active objects
(from now on called actors) and passive objects (typical ob-
jects in object-oriented programming, but without synchron-
isation). Encore actors can be dynamically created, have a
logical thread of control and communicate with other actors
through asynchronous message sends. Asynchronous mes-
sage sends use the ! notation (e.g., Listing 1, Line 14) and
synchronous calls use the . notation (e.g., Listing 1, Line 15).
Messages to an actor are enqueued in its private mailbox and
executed in FIFO order by the actor’s own thread by execut-
ing a corresponding method on the actor. An actor’s fields
can only be read and written by the actor itself. Scheduling
is cooperative, and there is no notion of preemption.

The results of asynchronous messages sends are commu-
nicated using futures. Futures are fulfilled at most once, al-
ways implicitly, either by returning from the method ex-
ecuted as the result of recieving an asynchronous message,
or by delegating the fulfillment to another actor through an
asynchronous message send [12]. Listing 1 shows an example
of an actor declaration (Line 1) with three methods: block(),
noblock(), and print() (Lines 5, 13, and 18). The block()
method illustrates the typical use of futures. The actor sends
the (asynchronous) message compute to the other_actor
and immediately gets a future, fut, from other_actor. This
future will eventually be fulfilled by other_actor with the
return value from its compute () method.

Castegren, Clarke, Fernandez-Reyes, Wrigstad, Mingkun Yang

19
20
21
22
23

55

active class Actor
var count : int
var other_actor : Actor

def block() : unit
—— bang = async msg
var fut = this.other_actor ! compute()

var value = get fut —— blocks!
this.print(value)
end

def noblock() : unit
this.other_actor ! compute() ~~>
fun (v) => this.print(v) —- dot = synccall
end

def print(v : Obj) : unit
this.count += 1
. —— some action (printing)
end

end

Listing 1. Running example.

Encore also has a notion of tasks, denoted async e end.
Tasks are asynchronous one-shot actors running the expres-
sion e. Spawning a task immediately returns a future.

Futures’ main operations are get and future chaining.

The get operation blocks the current actor until the future
is fulfilled (receives its value) and then returns that value. If
get is immediately applied to the future to get the result of
the message send (Line 9 in block()), then message sends can
be structured like method calls and returns in object-oriented
programming. That is, the operation get fut blocks until
the value is computed, after which the local method print()
is called, synchronously, with this value as parameter.

The noblock() method gives an example of future chain-
ing (the ~~> operator, on Line 14) which attaches a callback
to the future return from compute() to be evaluted on ful-
filment. The callback is the closure in Line 15. Any number
of callbacks can be registered on a future, and each callback
registration returns a new future, a handle to its future result.
When a future is fulfilled by a value v, v is passed to each of
the registered callbacks. In noblock(), this means evaluating
the closure which calls this.print(v). In this particular ex-
ample, the (future) result of the printing operation is ignored,
but had it not, it would have been the unit value returned
from print().

Effectively, the implementation of noblock() makes the
printing method (Line 15) a continuation of compute without

Attached and Detached Closures in Actors

requiring the compute method to be aware of this fact. Thus,
future chaining allows the construction of pipelines of asyn-
chronous processes in a program.

2.2 Encore’s Capability-Based Type System

Encore associates each reference with a capability that defines
which operations are available on the referenced object (e.g.,
which methods are available to call) as well as the reference
itself (e.g., may this reference be copied). A capability can be
thought of as a slice of an object. Capabilities are tracked by
the type system, which prevents the creation of a capability
which could cause a data race. If two actors have references
to the same object, the type system ensures that the capabil-
ities of these references do not allow concurrent write/write
or read/write accesses to (the same parts of) the underlying
object [8].

The operations available on an object through a reference
is defined by the type of the capability, just as in any object-
oriented language. Additionally, each capability is annotated
with a mode which defines how data race freedom is achieved;
either by restricting how the capability may be copied, or
by constraining the type of the capability. Encore currently
supports five different capability modes:

linear — a capability that may not be copied. A linear
capability is safe to use because no alias to the same
object (or part of object) may exist.

local — a capability that may not be passed between
actors. A local capability is exclusively owned by the
owner that created it.

subord — a subordinate capability which is strongly
encapsulated within an object. A subord capability
can only be accessed by going via the capability of the
encapsulating object’.

read — a capability that does not allow mutating
operations. A read capability is always safe to pass
between actors.

active — a capability through which all accesses are
asynchronous (i.e., message sends). All actor
references have active capabilities.

Types are introduced via classes and traits, and the same
type can be reused with different modes depending on the in-
tended usage (with the exception of read capabilities, which
can only be used when the constitutent parts do not allow
mutating operations). For example, a local List is alist that
is intended to be used locally by a single actor, whereas a
linear List is a list that can be transferred between actors
(but never shared). It is also possible to compose and decom-
pose capabilities, and for example turn a mutable linear
capability into an immutable read capability which may be
shared freely. We refer to prior work for details [8].

IFor example, subordinate capabilities inside a linear capability are safe
from data-races because the linear capability cannot be shared across actors.

56

AGERE 18, November 5, 2018, Boston, MA, USA

When defining the class of an actor, the capability of this
is interesting. For example, when the actor accesses its own
fields (e.g., Line 19 in Listing 1), this is a local capability —
this makes sense, since only the actor itself may access its
own fields. On the other hand, when the actor shares itself
with other actors, or sends itself messages, this is an active
capability. This distinction turns out to be important when
reasoning about how closures can be shared (cf., Section 5).

3 Problem Space

Actor programs require careful consideration when handling
closures that capture mutable state. If these stateful closures
are evaluated by other actors, then their evaluation can in-
troduce data races. This section uses Listing 1 to motivate
the discussion of the problems that arise when combining
actors and closures.

As explained in the previous section, Actor has three
methods: block(), noblock(), and print(). The block()
and noblock () methods use print() in a synchronous and
asynchronous way, respectively.

The print method counts the number of printed items
(Line 19) and to this end reads and writes a field in the actor.

No state is captured in the block method — there are no
closures. The closure in the noblock () method is chained on
the future, thus capturing the state of the print method.

The last scenario is subject to data-races as the thread
of the fulfiller of the future executes the this.count += 1
operation (Line 19). Multiple futures fulfilled by different act-
ors could be racing on incrementing the same print counter,
or racing with the thread of the actor who supposedly has
solitary access to count.

Clearly, the use of future chaining on a closure can cause
data races in the program. This problem is the same regard-
less of whether the closure (Line 15) is exposed to the world
outside the actor using future chaining (as in Line 14) or
returned from a method.

In summary, programming with closures in actor pro-
grams requires careful consideration of how to handle clos-
ures that capture state as it can break actor isolation.

To ensure safety and be able to leverage the expressive
power of closures and the future chaining operation, we have
identified the following contraints on closures.

3.1 Capturing Local State

A closure chained on a future can be thought of as the con-
tinuation of the method — what the method does with the
result in the future. As such, closures should be able to cap-
ture the local state, including this, of the surrounding actor.

3.2 Sharing Closures Among Actors

It should be possible to create a closure and pass it from one
actor to another, who will then evaluate it. This will facilitate

AGERE ’18, November 5, 2018, Boston, MA, USA

higher-order programming patterns, such as asynchronous
pipelines and exception handling.

3.3 Data Race-Freedom

Closures that capture local actor state while being shared
among actors are subject to race conditions, wherein two
actors try to write (or read and write) the same field of the
same object at the same time. Attaching a closure to a fu-
ture or returning a closure should not violate the data race
freedom provided by actors.

3.4 Expose Parallelism

Closures that do not capture local state in a way that could
lead to data races can be run independently of the actor that
created them. Such closures can be used as a source of paral-
lelism For example, Encore’s parallel combinators [13] uses
such closures to express asynchronous, speculative parallel
pipelines. Ideally, in order to reason about parallelism, the
programmer needs to know whether a closure can be run
independently.

3.5 Deadlock Avoidance

As performing a get on a future blocks the actor in which
the get is performed, a deadlock can result if the fulfillment
of the future depends on a computation performed by the
current actor, not yet performed. Deadlock avoidance should
be as simple as possible.

3.6 Reasoning about Timing and Scheduling

Chaining closures on futures results in computations whose
timing are not easy to reason about, because the running of
the closure depends on whichever computation is fulfilling
the future and when the scheduler schedules that computa-
tion and the chained computation. This problem is exacer-
bated when chaining multiple closures to form pipelines.

4 The Encore Solution:
Attached and Detached Closures

Encore has made some progress towards addressing the prob-
lems described in the previous section, though the current
solution is not complete and needs to be refined. We present
the solution in two parts. The first part, treated in this sec-
tion, deals with the changes to the runtime behaviour of
Encore, and the second part, treated in Section 5, describes
how Encore’s capability system is employed to ensure data
race freedom.

Encore’s runtime handle attached and detached closures
separately. Attached closures outside their creating actor
are evaluated by being passed to their creating actor and
executed there, thus serialising its execution with any other
activity in the creator. Detached closures may be passed
around freely and additionally be evaluated by any thread.

Castegren, Clarke, Fernandez-Reyes, Wrigstad, Mingkun Yang

57

Since a detached closure can be evaluated by any thread
of control, it can always legally be turned into an attached
closure, at the risk of increasing latency through the addition
of an additional pipeline stage in the computation.

Consider the following snippet from the running example:

this.other_actor ! compute() ~~>
fun (v) => this . print(v) —— synccall

Because the closure synchronously calls print() of the sur-
rounding actor, which modifies its state, it must be attached.

Consider the alternative implementation which uses an
asynchronous message send, which places a message in the
surrounding actor’s queue rather than performing modifica-
tions in the current thread:

this.other_actor ! compute() ~~>
fun (v) => this ! print(v) —-— async call

This implementation allows the closure to be detached, as it
neither access the fields of the surrounding actor nor cap-
tures its state. This solution avoids data races as count is
only accessed using the actor’s own thread.

4.1 Who Runs the Runnables?

In principle, detached closures can be run by any thread.
As detached closures are typically attached to futures as
callbacks, it is at the time the future is fulfilled that the
closure becomes runnable, and the runtime needs to decide
who runs the closure based on whether it is attached or
detached.

If the closure is attached, the thread that fulfils the future
sends the attached closure, and the value it will be applied
to, back to the closure’s owner.

If the closure is detached, the thread that fulfils the future
will evalute the closure. This is a pragmatic design choice
in Encore, made to reduce overall latency. When an actor
fulfils a future, it also executes all callbacks on that future.
By similar reasoning, registering a callback on an already
fulfilled future immediately runs the callback in the thread
of the registering actor.

There is plenty of scope to allow different actors to run
the closures, or to even run them independently of actors by
passing them to a task.

4.2 Supporting Sharing of Attached Closures

Chaining of closures is permitted, regardless of the clos-
ure’s attached/detached status. It would be possible to allow
attached closures to be passed around freely — but not evalu-
ated except in the context of their creating actor. This, how-
ever, causes typing to become problematic. If an attached
closure gets to its owning actor, the actor evaluates the clos-
ure. If an attached closure gets to a non-owning actor, this
actor would send a message back to the owning actor, to
do its evaluation, but its return type would be a future. A
simple solution is to use the get operation on this future.

Attached and Detached Closures in Actors

This violates a design principle of Encore that opts for a clear
demarkation of asynchronous operations.

4.3 Summary

The key challenge for programming with closures in actor
programs is that a closure may capture variables and fields
from the context in which it is created. Encore distinguishes
closures whose captured variables or fields give it the capab-
ility to mutate the state of its creating actor, and categorises
these as attached. All other closures are detached.

Closures of either category can be created and chained
on futures, but only detached closures can be passed in mes-
sages between actors. When executing closures, attached
closures must always be executed by their creating actors, to
ensure that the execution is interleaved — never overlapping
— with that actor’s other operations. Detached closures can
be executed freely by any actor at any time.

The next section explores how Encore’s capability system
preserves data race freedom in the presence of attached and
detached closures.

5 The Encore Solution:
Closures and Capabilities

This section explains how Encore’s capability system deals
with closures, and how it can be used to reason about at-
tached and detached closures. The key to preventing data
races through variables captured by a closure is to look at
the capabilities of these variables.

Recall that the only capabilities that allow unsynchronised
mutation are linear, local, and subord capabilities. How-
ever, if a closure could capture such a capability and then
pass it to another actor, running that closure would not be
safe. On the other hand, capturing a read or active capab-
ility (or some variable of a primitive type) is always safe:
running such a closure cannot cause data races.

Encore tracks what a closure captures by also annotating
closure types with modes when needed: a closure that cap-
tures a local or a subord capability will get that same mode.
This means that a closure that captures a local capability
will itself be local, and can therefore not be passed to a
different actor (and similarly for subordinate capabilities). A
closure that does not capture local or subord capabilities
remains mode-less.

Without the concept of attached closures, it would not
be safe to do future chaining with a closure which captures
local or subord capabilities, since the closure may be run
by a different actor. On the other hand, with the attached/-
detached distinction in the language, the type of the closure
unambigously shows if a closure needs to be attached for
safety (i.e., it captures local or subord state) or not. For ex-
ample, the closure on Line 15, Listing 1, captures the local
capability this, and thus gets the type “local (t -> unit)”
(where t is the type of v). This means that the closure must

58

AGERE 18, November 5, 2018, Boston, MA, USA

be attached so that the creating actor is the one that will run
the closure. On the other hand, if the body of the closure
is changed to “this ! print(v)” so that this is used as an
active capability, the type of the closure is just “t -> unit”,
meaning that it can safely be used as a detached closure and
be run by any actor.

Closures that capture linear capabilities are more com-
plicated. These closures must be treated linearly, i.e., never
have more than one reference to them. If calling the closure
also consumes the linear capability (e.g., by returning it), care
must be taken to ensure that the closure cannot be called
more than once. For simplicity, Encore does not currently
support capturing linear capabilities.

In summary, a closure that captures local or subord cap-
abilities must be attached, while a closure that does not can
be detached. Since this information is already present in the
type of the closure, correctly identifying attached closures
can be done automatically. Notably, no additional annota-
tions are required for this; the code in Listing 1 can remain
unchanged, and the closure on Line 15 would still be cor-
rectly identified as attached.

6 Open Problems

Some open problems remain. We discuss these in the current
section and describe some possible solutions.

6.1 Sharing Attached Closures

As outlined in Section 4.2, it would be possible to pass around
attached closures on their own, without chaining them to fu-
tures. This has the downside that it is harder to reason about
the latency of calling a closure, and requires that all closure
calls are preceded by an ownership check. By tracking which
closures are attached,we could restrict this downside to only
these closures.

One way to track this would be to annotate closures with
the active mode, just as closures which capture local state
are given the local mode (cf: Section 5). A closure of type
“active (t1 -> t2)” would then be known to be attached
and asynchronous, meaning that the programmer knows
that calling it may require synchronisation with the creator
of the closure. Additionally, it would be possible to convert
an unsharable closure of type “local (t1 -> t2)”, which
captures local state, to a sharable attached closure of type
“active (t1 -> t2)”, analogously to how the capability of
this can be seen as both local and active depending on
usage (cf. Section 2.2).

6.2 Deadlocking on Attached Closures

Performing a get on a future can possibly lead to a deadlock
if the fulfiller of the future is the current actor or depends
on the current actor assisting in the computation — recall
that get blocks the current actor. The problem is also present
with closures chained on futures, and it is particularly subtle.

AGERE ’18, November 5, 2018, Boston, MA, USA

If the closure must be run by the current actor, doing a get
on its future will result in deadlock. Deadlock detection is
either statically undecidable or dynamically expensive. Thus
the programmer needs to be able to reason about which actor
will evaluate a closure to avoid directly deadlocking.

Lines 6-7 of Listing 1 shows an actor sending a mes-
sage to an other_actor and blocking on the future result. If
other_actor happens to be the current actor, this will invari-
ably deadlock, as Line 7 prevents the actor from picking up
the message and computing the result it is blocking on. This
is a well-known artefact in actor systems, and an indication
of a high-level design problem if it happens in practice.

Attached and detached closures could be argued to ex-
acerbate this problem in combination with future chaining.
Consider the following lines of Encore:

1 var fut = a ! msg() ~~> fun (v) => ...
2 var value = get fut

On Line 1, we chain a closure on the future resulting from
the msg() message send. If the closure on Line 1 is attached, it
will be sent back to the current actor to be computed, but will
never be able to pick this message up because it is blocking
on Line 2 above.

Static deadlock detection in Encore is complicated by its
support for delegating the task of fulfilling a future to another
actor using the forward construct [12] which essentially al-
lows a single future to move across an asynchronous pipeline,

to be fulfilled at its end.

6.3 Reasoning about Timing and Scheduling

As long as all closures are executing synchronously in a
pipeline e.g., function composition, timing is easy to predict.
However, when building pipelines of asynchronous opera-
tions, a move forward to the next pipeline stage will depend
on how long it takes for the next actor in the pipeline getting
to the head of its scheduler queue.

Encore’s scheduler is not currently able to observe topo-
logies and e.g., organise objects in a pipeline in a suitable
fashion on the hardware. Encore’s support for off-loading
computation from an actor via detached closures is relat-
ively weak. A detached closure will be executed by the actor
that fulfils the future it is chained on. In many cases, it is
reasonable to want to attach a closure even if it could tech-
nically be detached, e.g., in a distributed system where the
cost of safely moving captured data to a remote node would
be much higher than moving computation to the data.

The design decision in Encore to make the fulfiller of a
future run the detached closures chained on that future has
the possible side-effect of moving work out of the current
actor. Furthermore, many different closures may be chained
on that future, and a fulfiller needs to evaluate all of them be-
fore the method returns. This makes reasoning about timing
in such situations difficult.

Castegren, Clarke, Fernandez-Reyes, Wrigstad, Mingkun Yang

59

On the other hand, if the future is already fulfilled, then the
actor doing the chaining runs the closure. Thus, the timing
of future chaining depends heavily on whether or not the
future is fulfilled.

7 Related Work and Discussion

Several existing actor languages support closures, as sum-
marised in Table 1.

Closures in Pony must declare which variables they cap-
ture (similar to Spores [18]). If a closure captures a reference
that it uses for mutation, i.e., a ref capability, the closure
itself must be declared as ref, meaning it cannot be passed
between actors. Pony does not support chaining of attached
closures on promises (analogous to futures) and having them
passed back to the closure’s owner for evaluation. Pony’s
promises are implemented as actors, and thus have a logical
thread of control. This is an interesting design choice with
respect to executing closures chained on futures (cf., Sec-
tion 4.1).

The AmbientTalk language only supports attached clos-
ures, meaning a closure is always passed back to its creating
actor for evaluation. This is in line with its concurrency
model which is based on E’s [19], which partitions an ap-
plication into different “vats” and makes method calls across
vat-boundaries asynchronous. Encore has a similar feature,
bestow, that allows references across actors’ heaps, but op-
erations on those references are made asynchronous by the
compiler [7]. In some ways, bestow can be thought of as im-
plicitly wrapping operations in attached closures, which are
sent back to the actor whose state it captures on execution.

Scala/Akka does not directly support the notion of at-
tached or detached closures, although both concepts can be
implemented manually. This is in line with the lack of sup-
port for actor isolation of Scala/Akka, which is on the level
of Java, i.e, none. It is also notable that it is not uncommon
for actors in Scala to break the actor concurrency model [20].

The ABS language does not support closures. ABS has
a functional sublanguage which does not include objects
— the only objects in ABS are the concurrent actor objects.
ABS supports passing functions by name, but because func-
tions cannot capture mutable variables (including this), ABS
avoids the problem (but is also less expressive in this respect).
ABS does offer some type system support that is close to

Table 1. Handling of closures in actor languages.

Language

Pony [9, 11]
AmbientTalk [10]
Scala/Akka [14]
Erlang [2]

ABS [15]
Proactive [6]

Strategy

All closures are detached

All closures are attached

Unsafe sharing of closures allowed
No mutable state

No closure support

Closures are deep-copied

Attached and Detached Closures in Actors

AGERE 18, November 5, 2018, Boston, MA, USA

Table 2. Instantiating the design space combinations.

no. | Tetheredness | Execution Sharability | Comment

1 attached synchronous | sharable Requires explicit passing back to creator to evaluate

2 attached synchronous | unsharable | Current Encore implementation

3 | attached asynchronous | sharable Supported by AmbientTalk, and Encore with future chaining
4 | attached asynchronous | unsharable | Delaying operations

5 | detached synchronous | sharable Supported by Encore and Pony

6 detached synchronous | unsharable | Probably not useful

7 detached asynchronous | sharable Task parallelism

8 | detached asynchronous | unsharable | Probably not useful

what is required to track attached and detached closures.
Location Types [21], a pluggable type system for the ABS
programming language, track whether a reference is near,
on the same core, concurrent-object group, machine, ..., far,
on another core, concurrent-object group, machine, ..., or
somewhere, meaning location unknown. Near objects can
be interacted with using synchronous method call, whereas
calling far objects must use asynchronous message sends.

The Erlang language mimics the implementation of state-
ful actors using tail-recursive processes that pass around the
current values of their state, rather than allowing mutable
state. Capturing mutable state in a closure is therefore not
possible.

Finally, the Proactive language enforces the deep copying
of passive objects when passing objects between actors. Mod-
elling closures is possible using objects with a single method,
but such closures will always be effectively detached due to
the deep copying. Implementing attached closures manually
is therefore not possible.

Taking a step back, there are essentially three dimensions
to the design space of closures in actors:

1. Tetheredness € { attached, detached }
2. Execution € { synchronous, asynchronous }
3. Sharability € { sharable, unsharable }

Tetheredness concerns who can apply the closure. An at-
tached closure can only be executed by its creating actor,
whereas a detached closure can be executed by any actor
(thread of control). Execution concerns whether the closure
is executed immediately by (synchronously) the current thread
of control, or in an asynchronous operation in some other actor.
Sharability concerns whether the closure can be passed around
(sharable) or not (unsharable).

Table 2 overviews all combinations of the properties, and
some programming languages that support the combina-
tions.

Combination 1, { attached, synchronous, sharable }, is
interesting. It describes a design where attached closures can
be shared freely, but not applied outside of their creating
actor. This implementation requires the ability to inquire
the owner of a closure and compare with the current actor,

60

or alternatively a static type system which is able to cap-
ture ownership precisely. Combination 2 avoids the latter by
forbidding sharing. Combination 3 makes attached closures
safe to share by passing them back to their creating actor,
making the application asynchronous. This is the approach
taken in AmbientTalk [10] and future chaining in Encore.
The most permissive is Combination 5: { detached, syn-
chronous, sharable }. Such closures can be passed around
freely and anyone can apply them using their own thread of
control. Two examples of such closures in Encore would be:

fun (v:int)
fun (v:int)

=> v + 1
=> this ! action(v)

The first is side-effect free (including read effects on cap-
tured state). The latter only reads an active capability, which
is safe.

The Encore async construct is commonly used to create
closures in the style of Combination 7: detached, asynchron-
ous. These are exactly the properties needed for parallelism
inside an actor’s method:

val fut = async fib(40) end —— {detached, async }

The closure above calculates fib(40) in a separate logical
thread. In Encore, such a closure must not capture the creat-
ing actor’s state or parallelism is lost. Removing the share-
ability destroys parallelism, but lets the actor put off running
tasks to the future, interleaving them with other operations,
thus safely allowing access to state (Combination 4).

Combinations 6 and 8 are probably not useful given the
paradoxical combination of detachment (can be run by any-
one) and unsharable (cannot be shared with anyone).

8 Concluding Remarks

This paper introduces the dichotomy of attached and de-
tached closures. (Table 2 deepens this analysis a little further.)
Attached closures must effectively be run by their creating
actor when executed, whereas detached closures must not.
Thus, executing the former outside of the creating actor must
run (logically in the very least) as an asynchronous activity.

AGERE ’18, November 5, 2018, Boston, MA, USA

Attached and detached closures exist before in different lan-
guages, but not as explicitly identified concepts, and not in a
single language.

The Encore programming language supports both attached
and detached closures, although attached closures can only
be passed between actors implicitly via future chaining. We
outline a way to extend this support using existing Encore
concepts at the type-level.

Acknowledgments

This work was partially supported by the Swedish Research
Council through the UPMARC Programming for Multicore
Architecture Research Centre and the SCADA project.

References
[1] Gul Agha. 1986. Actors: a model of concurrent computation in distributed

[2

3

[10

]

flans!

[

—

—

—

—

—

systems. MIT Press.

Joe Armstrong, Robert Virding, Claes Wikstrém, and Mike Williams.
1993. Concurrent programming in Erlang. Prentice Hall.

Henry G. Baker and Carl Hewitt. 1977. The incremental garbage
collection of processes. SIGART Newsletter 64 (1977), 55-59. https:
//doi.org/10.1145/872736.806932

Frank De Boer, Vlad Serbanescu, Reiner Hihnle, Ludovic Henrio,
Justine Rochas, Crystal Chang Din, Einar Broch Johnsen, Marjan Sir-
jani, Ehsan Khamespanah, Kiko Fernandez-Reyes, and Albert Mingkun
Yang. 2017. A Survey of Active Object Languages. ACM Comput. Surv.
50, 5, Article 76 (Oct. 2017), 39 pages. https://doi.org/10.1145/3122848
Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-
Reyes, Einar Broch Johnsen, Ka I Pun, S Lizeth Tapia Tarifa, Tobias
Wrigstad, and Albert Mingkun Yang. 2015. Parallel Objects for Mul-
ticores: A Glimpse at the Parallel Language Encore. In Formal Methods
for Multicore Programming, SFM 2015, M Bernardo and E B Johnsen
(Eds.). Lecture Notes in Computer Science, Vol. 9104. Springer, 1-56.
Denis Caromel, Christian Delbe, Alexandre Di Costanzo, and Mario
Leyton. 2006. ProActive: an integrated platform for programming
and running applications on grids and P2P systems. Computational
Methods in Science and Technology 12 (2006), issue 1. https://hal.
archives-ouvertes.fr/hal-00125034

Elias Castegren, Joel Wallin, and Tobias Wrigstad. 2018. Bestow and
Atomic: Concurrent Programming Using Isolation, Delegation and
Grouping. Journal of Logical and Algebraic Methods in Programming
100 (2018), 130-151. https://doi.org/10.1016/j.jlamp.2018.06.007
Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities
for Concurrency Control. In 30th European Conference on Object-
Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy
(LIPIcs), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 5:1-5:26. https:
//doi.org/10.4230/LIPlcs.ECOOP.2016.5

Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. 2015. Deny capabilities for safe, fast actors. In Proceedings of
the 5th International Workshop on Programming Based on Actors, Agents,
and Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, October 26,
2015, Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci, and Carlos
Varela (Eds.). ACM, 1-12. https://doi.org/10.1145/2824815.2824816
Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. 2006. Ambient-Oriented Programming
in AmbientTalk. In ECOOP 2006 - Object-Oriented Programming, 20th
European Conference, Nantes, France, July 3-7, 2006, Proceedings (Lecture
Notes in Computer Science), Dave Thomas (Ed.), Vol. 4067. Springer,
230-254. https://doi.org/10.1007/11785477_16

Castegren, Clarke, Fernandez-Reyes, Wrigstad, Mingkun Yang

61

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Pony Developers. 2018. Pony — High-Performance Actor Programming.
http://www.ponylang.org. (2018).

Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc
Vo. 2018. Forward to a Promising Future. In Coordination Models and
Languages - 20th IFIP WG 6.1 International Conference, COORDINATION
2018, Held as Part of the 13th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June
18-21, 2018. Proceedings (Lecture Notes in Computer Science), Giovanna
Di Marzo Serugendo and Michele Loreti (Eds.), Vol. 10852. Springer,
162-180. https://doi.org/10.1007/978-3-319-92408-3_7

Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. 2016.
ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline
Computations. In Coordination Models and Languages - 18th IFIP
WG 6.1 International Conference, COORDINATION 2016, Held as Part
of the 11th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-
9, 2016, Proceedings (Lecture Notes in Computer Science), Alberto
Lluch-Lafuente and José Proenca (Eds.), Vol. 9686. Springer, 101-120.
https://doi.org/10.1007/978-3-319-39519-7_7

Lightbend Inc. 2018. AKKA - Scala actor library. http://akka.io/.
(2018).

Einar Broch Johnsen, Reiner Hihnle, Jan Schifer, Rudolf Schlatte, and
Martin Steffen. 2010. ABS: A Core Language for Abstract Behavi-
oral Specification. In Formal Methods for Components and Objects -
9th International Symposium, FMCO 2010, Graz, Austria, November
29 - December 1, 2010. Revised Papers (Lecture Notes in Computer Sci-
ence), Bernhard K. Aichernig, Frank S. de Boer, and Marcello M. Bon-
sangue (Eds.), Vol. 6957. Springer, 142-164. https://doi.org/10.1007/
978-3-642-25271-6_8

Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. 2006. Creol: A
type-safe object-oriented model for distributed concurrent systems.
Theor. Comput. Sci. 365, 1-2 (2006), 23-66. https://doi.org/10.1016/j.tcs.
2006.07.031

R. Greg Lavender and Douglas C. Schmidt. 1996. Pattern Languages
of Program Design 2. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, Chapter Active Object: An Object Behavioral Pattern
for Concurrent Programming, 483-499. http://dl.acm.org/citation.
cfm?id=231958.232967

Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores:
A type-based foundation for closures in the age of concurrency and
distribution. In European Conference on Object-Oriented Programming
(Lecture Notes in Computer Science), Vol. 8586. Springer, 308-333.
Mark Samuel Miller. 2006. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. Ph.D. Dissertation.
Johns Hopkins University, Baltimore, Maryland, USA.

Samira Tasharofi, Peter Dinges, and Ralph E Johnson. 2013. Why do
scala developers mix the actor model with other concurrency models?.
In European Conference on Object-Oriented Programming (Lecture Notes
in Computer Science), Vol. 7920. Springer, 302-326.

Yannick Welsch, Jan Schifer, and Arnd Poetzsch-Heffter. 2013. Loca-
tion Types for Safe Programming with Near and Far References. In
Aliasing in Object-Oriented Programming. Types, Analysis and Veri-
fication, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). Lec-
ture Notes in Computer Science, Vol. 7850. Springer, 471-500. https:
//doi.org/10.1007/978-3-642-36946-9_16

Yasuhiko Yokote and Mario Tokoro. 1987. Concurrent Programming
in ConcurrentSmalltalk. In Object-Oriented Concurrent Programming,
Akinori Yonezawa and Mario Tokoro (Eds.). MIT Press, 129-158.
Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. 1986.
Object-Oriented Concurrent Programming in ABCL/1. In Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’86), Portland, Oregon, Proceedings., Norman K. Meyrowitz
(Ed.). ACM, 258-268. https://doi.org/10.1145/28697.28722

https://doi.org/10.1145/872736.806932
https://doi.org/10.1145/872736.806932
https://doi.org/10.1145/3122848
https://hal.archives-ouvertes.fr/hal-00125034
https://hal.archives-ouvertes.fr/hal-00125034
https://doi.org/10.1016/j.jlamp.2018.06.007
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1007/11785477_16
http://www.ponylang.org
https://doi.org/10.1007/978-3-319-92408-3_7
https://doi.org/10.1007/978-3-319-39519-7_7
http://akka.io/
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1016/j.tcs.2006.07.031
https://doi.org/10.1016/j.tcs.2006.07.031
http://dl.acm.org/citation.cfm?id=231958.232967
http://dl.acm.org/citation.cfm?id=231958.232967
https://doi.org/10.1007/978-3-642-36946-9_16
https://doi.org/10.1007/978-3-642-36946-9_16
https://doi.org/10.1145/28697.28722

	Abstract
	1 Introduction
	2 Encore Primer
	2.1 Overview
	2.2 Encore's Capability-Based Type System

	3 Problem Space
	3.1 Capturing Local State
	3.2 Sharing Closures Among Actors
	3.3 Data Race-Freedom
	3.4 Expose Parallelism
	3.5 Deadlock Avoidance
	3.6 Reasoning about Timing and Scheduling

	4 The Encore Solution: Attached and Detached Closures
	4.1 Who Runs the Runnables?
	4.2 Supporting Sharing of Attached Closures
	4.3 Summary

	5 The Encore Solution: Closures and Capabilities
	6 Open Problems
	6.1 Sharing Attached Closures
	6.2 Deadlocking on Attached Closures
	6.3 Reasoning about Timing and Scheduling

	7 Related Work and Discussion
	8 Concluding Remarks
	Acknowledgments
	References

