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Abstract The actor model is an elegant concurrency model with the actor
as the central concept. An actor encapsulates a thread of control and
isolated state, communicating with other actors exclusively via message
passing. This makes reasoning about the behaviour of a single actor simple,
but, due to the coupled units of isolation and concurrency, performing
atomic operations involving multiple actors becomes harder. Recent work
on behaviour-oriented concurrency mitigates this by explicitly decoupling
isolation and concurrency.
In this paper we explore the connections between the actor model and
behaviour-oriented concurrency and the effects of (de)coupling the units of
isolation and concurrency. We derive the semantics of behaviour-oriented
concurrency by starting from a semantics of the actor model and gradually
decoupling isolation and concurrency. We show that behaviour-oriented
concurrency generalises the actor model by proving a simulation the-
orem: a program in the actor model has a corresponding program using
behaviour-oriented concurrency.

1 Introduction

The actor paradigm was introduced in 1973 by Carl Hewitt et al. [16], formalised
by Irene Greif [13] in 1975, and again by Gul Agha [1] in 1986 as a computational
model for handling concurrency in distributed systems. It has also been used as
an elegant model for single-node concurrency. The actor is the fundamental unit
of computation in the paradigm; an actor encapsulates a single-threaded control
loop, isolated state, and an interface through which other actors can communicate
via asynchronous message passing. The goal of the paradigm is to simplify the
many complexities of concurrent programming into one concept: sending messages
to actors. This simplification provides structure to concurrent code, improving
the programmer’s ability to understand and reason about their program.

We can view the actor paradigm as marrying together an object with con-
currency in object-oriented programming [2]. Typically in object-oriented pro-
gramming, message-passing (or “calling a method”), is handled synchronously in



the calling thread. If we were to introduce multiple threads calling methods on
an object, then we must expect, and prevent, data-races. Instead, in the actor
paradigm, the actor uses its own thread to process the messages one at a time,
thus freeing the programmer the concerns of synchronisation, data-races, etc.

This design intentionally creates a tight coupling between the unit of isolation
and the unit of concurrency. In the actor context the unit of isolation is the
fragment of the program state reachable only by a single actor, and the unit of
concurrency is the single-thread control loop of an actor. This design entails that
an actor’s thread can only access that actor’s state and conversely that an actor’s
state can only be accessed by that actor’s thread. This is the key to the elegance
and simplicity of the model: computation internal to an actor permits sequential
reasoning.

Recent work on behaviour-oriented concurrency (BoC) demonstrates how
tightly coupling isolation and concurrency can create tensions between atomicity
and a program’s inherent concurrency [9]. It introduces an alternative concurrency
paradigm to address these challenges in a non-distributed setting. BoC draws
inspiration from the actor model, but differentiates itself by decoupling the units
of isolation and concurrency, relieving some of the tensions in program design.
In this paper we demonstrate this inspiration by reimagining the actor model
paradigm, decoupling isolation and concurrency, to arrive at BoC.

We make the following contributions:

– We highlight the inherent tensions of the actor model that comes from coupling
concurrency and isolation (Section 2),

– We show how these tensions can be relieved by behaviour-oriented concurrency
(Section 3),

– We derive the formal semantics of behaviour-oriented concurrency by starting
from a formal actor semantics and modifying it until we arrive at behaviour-
oriented concurrency (Section 4),

– We prove that the semantics for behaviour-oriented concurrency can simulate
the actor semantics we started from (Section 5).

After the main contributions we discuss our results in Section 6 and conclude in
Section 7.

2 Actors and the Tensions of Coupling Concurrency and Isolation

Coupling the units of concurrency and isolation leads to tension between the
ability to reason atomically about updates to state, and the degree of concurrency
inherent in a program. We can illustrate this tension in designing a solution to
the classic bank transfer example. Take two bank accounts from which we can
withdraw money, and to which we can deposit money. We want to be able to
atomically transfer money from one account to another account. This means it
should be not be possible for another operation involving either account to take
place during the transfer, nor should we be able to lose money in the system.
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1 actor Account
2 var balance: U64
3 var frozen: Bool = false
4

5 new open(balance’: U64) =>
6 balance = balance’
7

8 be withdraw(amount: U64) =>
9 if ((not frozen) and (balance >= amount)) then

10 balance = (balance - amount)
11 end
12

13 be deposit(amount: U64) =>
14 if (not frozen) then
15 balance = (balance + amount)
16 end

Listing 2.1: A naive implementation of accounts using actors.
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Figure 1: Two-phase commit

Listing 2.1 shows a naive implementation
(written in Pony [19]) where each bank ac-
count is modelled as an actor. Two actors
can concurrently operate on their accounts,
but we are unable to express atomic transfer
of money between accounts in a straightfor-
ward manner. Note that both withdraw and
deposit can fail, either due to accounts be-
ing frozen or due to there not being enough
funds for a withdrawal. If we instead mod-
elled a bank as an actor encapsulating all
of its accounts, we get atomic transfer of
money straightforwardly, but operations on
unrelated accounts will be serialised.

If we pursue the goal of highly concurrent
programs, modelling each account as an actor,
then we will need to build a protocol to ensure
transfers can complete atomically. Two-phase
commit is an often relied upon protocol to
achieve atomic transfer between two actors;
this involves a third actor to coordinate the transfer. Figure 1 shows two-phase
commit with a coordinator c synchronising accounts s and r (acks may be omitted
when message failure cannot occur).

Listing 2.2 shows a Pony program implementing atomic transfers between
accounts using two-phase commit. Code that is not related to synchronisation
(the same as in Listing 2.1) is highlighted in blue. For a transfer scenario involving
a Coordinator c, coordinating the transfer of the amount a, from Account s to
Account r the two-phase commit proceeds as follows:
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1 actor Coordinator
2 var from: Account
3 var to: Account
4 var amt: U64
5 var aborted: Bool = false
6 var from_ok: Bool = false
7 var to_ok: Bool = false
8

9 new create(from’: Account,
10 to’: Account,
11 amt’: U64) =>
12 from = from’
13 to = to’
14 amt = amt’
15 from.prep_withdraw(amt, this)
16 to.prep_deposit(this)
17

18 be confirm_withdraw() =>
19 if aborted then
20 from.abort_transaction()
21 return
22 end
23 from_ok = true
24 if to_ok then
25 from.commit_withdraw(amt)
26 to.commit_deposit(amt)
27 end
28

29 // deposit logic analogous
30

31 be abort() =>
32 aborted = true
33 if to_ok then
34 to.abort_transaction()
35 elseif from_ok then
36 from.abort_transaction()
37 end
38
39 ...
40

41 fun transfer(s: Account, r: Account, amt: U64) =>
42 Coordinator(s, r, amt)

43 actor Account
44 var balance: U64
45 var frozen: Bool = false
46 var in_transaction: Bool = false
47

48 new open(balance’: U64) =>
49 balance = balance’
50

51 be abort_transaction() =>
52 in_transaction = false
53

54 be prep_withdraw(amt: U64,
55 c:Coordinator)=>
56 if (not in_transaction) and
57 (not frozen) and
58 (balance >= amt) then
59 in_transaction = true
60 c.confirm_withdraw()
61 else
62 c.abort()
63 end
64

65 be commit_withdraw(amt: U64) =>
66 balance = (balance - amt)
67 in_transaction = false
68

69 be prep_deposit(c:Coordinator)=>
70 if (not in_transaction) and
71 (not frozen) then
72 in_transaction = true
73 c.confirm_deposit()
74 else
75 c.abort()
76 end
77

78 be commit_deposit(amt: U64) =>
79 balance = (balance + amt)
80 in_transaction = false

Listing 2.2: Two-phase commit for actors. Logic related to the problem at hand
(rather than synchronisation) highlighted in blue.

1. c receives a request to transfer a funds from s to r (constructor on Line 9).
2. c tells s and r to reserve/accept a funds (Line 15). If they confirm, s and r

will ignore further messages (Lines 59 and 72) until released by c.
3. s and r either confirms the transfer to c (Lines 60 and 73) or reports back

that they cannot fulfill the request.
4. If both s and r confirms, c sends a commit message to s and r causing them

to perform their operations (Line 25). If one confirms and the other aborts, c
sends the confirming actor a message to abort (Lines 20 and 31).

5. After receiving confirm messages s and r can both continue to process messages
(Lines 67 and 80).
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Compare this with the bank-as-actor implementation:

1. The bank c receives a request to transfer a funds from s to r. The bank
verifies that both accounts exist and can withdraw and deposit a funds and
performs the corresponding withdrawal and deposit actions.

The coupling of the unit of isolation and concurrency brings a complexity to both
the programmer and the program when building these atomic operations.

In conclusion: when problem decomposition perfectly fits the actor model,
actor solutions are simple and elegant. However, when the fit is imperfect, the coup-
ling of unit of concurrency to unit of isolation that permits sequential reasoning
causes problems: fine-grained actors require bespoke complex protocol implement-
ations to reason about state spread across several actors; coarse-grained actors
unnecessarily serialise unrelated computation.

3 Behaviour-Oriented Concurrency

Behaviour-oriented concurrency has the same goal as actors: to simplify the com-
plexities of concurrent programming. However, instead of abstracting concurrency
to sending messages to actors, BoC abstracts concurrency into spawning tasks
that operate over explicitly declared state. BoC, like actors, brings structure to
concurrency.

To achieve this goal, BoC reimagines the actor paradigm. We take a step back
from actors and coupling the units of isolation and concurrency into an actor,
and intentionally decouple them into two distinct concepts. The unit of isolation
is the concurrent owner, or cown (pronounced ‘cone’), a single entry point into an
isolated fragment of the program state. The unit of concurrency is the behaviour,
an asynchronous unit of work that explicitly lists its required cowns. Behaviours
execute asynchronously with exclusive access to their required cowns [9].

1 struct Account {
2 uint64_t balance = 0;
3 bool frozen = false;
4 };
5

6 int main() {
7 cown<Account> acc =
8 make_cown<Account>();
9

10 // invalid direct access
11 acc.balance += 10;
12 }

Listing 3.1: Creating cowns to protect
data

In this section we will use the C++
BoC runtime API to discuss the con-
cepts of BoC [25]. A cown restricts ac-
cess to an isolated part of shared state.
In Listing 3.1, we define an Account
struct, Lines 1 to 4, and construct an
Account protected by a newly created
cown, Line 8. The account is inaccess-
ible through the cown until the cown is
acquired by a behaviour. This means
that the attempted access to the bal-
ance on Line 11 is a program error.

The only way to gain access to the
contents of the account, and indeed
any cown, is to spawn a behaviour that
requires it. Spawning a behaviour is achieved using the when construct which
takes the cowns to acquire, between regular braces (...), and a lambda function
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to apply when the cowns are available. The behaviour will run in the future,
asynchronously, when the cowns are not in use by any other behaviour. Behaviours
cannot acquire more cowns or release access to cowns throughout their execution
and cowns are implicitly released at the end of a behaviour’s execution.

1 void transfer(cown<Account> s,
2 cown<Account> r, uint64_t amount) {
3

4 when(s)<<[=](acquired<Account> s){
5 s.balance -= amount
6 };
7

8 when(r)<<[=](acquired<Account> r){
9 r.balance += amount

10 };
11 }

Listing 3.2: Spawning behaviours

In Listing 3.2 we define
a function transfer which
takes two Accounts wrapped
in cowns and an amount to
transfer between the accounts.
We first spawn a behaviour,
Lines 4 to 6, which requires the
source account s. [=] instructs
C++ to capture amount by
value. The arguments of the
lambda must match up with
the arguments of the when, i.e.,
each cown<T> must be matched with an acquired<T>. When the cown is available
the behaviour may run and will reduce the balance of the account. Similarly,
we spawn a second behaviour, Lines 8 to 10, which increases the balance of the
destination account r. Note that behaviours run asynchronously: the transfer
function will complete directly, regardless of when the behaviours run.

A defining feature of BoC, with respect to actors, is that behaviours can
require and use multiple cowns. Such behaviours will only run when none of the
required cowns are in use by other behaviours. When such a behaviour does run,
it will have access to the contents of all cowns, allowing us to construct more
complicated behaviours that depend on and affect the state of multiple cowns.
Listing 3.3 demonstrates this key feature of BoC in the context of the bank
transfer. We define a behaviour that requires both cowns s and r, the behaviour
checks if both accounts are able to perform the transaction and if so completes
it. This transfer is an atomic operation by construction of the BoC paradigm.

BoC allows us to create ad-hoc atomic operations that operate over the
state of multiple cowns. The type of the data which the cown protects does
not have to provide an interface which guarantees a certain degree of atomicity
(as per behaviours in actors). Moreover, if one of the cowns is currently in use

1 void transfer(cown<Account> s, cown<Account> r, uint64_t amount) {
2 when(s, r)<<[=](acquired<Account> s, acquired<Account> r) {
3 if (s.balance >= amount && !s.frozen && !r.frozen) {
4 s.balance -= amount
5 r.balance += amount
6 }
7 };
8 }

Listing 3.3: Behaviours with multiple cowns
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elsewhere the running of the behaviour is simply delayed without having to resort
to protocols like two-phase commit with retries.

3.1 Deadlock freedom and Causality

It is important to note that spawning is a synchronous action performed by
transfer, but starting and running the behaviours are asynchronous actions per-
formed by the runtime. Thus, assuming the two accounts do not alias,

1 when(s)<<[=](acquired<Account> s){
2 when(r)<<[=](acquired<Account> r){
3 r.balance += amount
4 };
5 s.balance -= amount
6 }
7

8 when(r)<<[=](acquired<Account> r){
9 when(s)<<[=](acquired<Account> s){

10 s.balance += amount
11 };
12 r.balance -= amount
13 };

Listing 3.4: Deadlock-free behaviours

the increase and decrease beha-
viours in Listing 3.2 can execute
in parallel, or in either order. To
further stress the importance of
this point, in Listing 3.4 the nes-
ted behaviour which increases the
balance of r, Lines 2 to 4, does not
have access to the account s. The
outer behaviour spawns the inner
behaviour synchronously and con-
tinues executing the rest of its be-
haviour. This means that the oper-
ation which reduces the balance of
s, Line 5, and the operation which
increases the balance of r, Line 3, may be executing in parallel. Moreover, by con-
struction, BoC is deadlock-free. In Listing 3.4 we construct two pairs of behaviours,
where the cowns required for the inner and outer behaviours are swapped. If when
is (erroneously) viewed as a synchronous lock-guard, then one could reasonably
expect a potential deadlock, however a deadlock is not possible here.

Finally, BoC guarantees causal ordering between behaviours, which we refer
to as a happens before order. A behaviour b happens before another behaviour
b′ iff b and b′ require overlapping sets of cowns, and b is spawned before b′ in
program order. In Listing 3.5, b1 and b2 do not require the same cowns and thus
can execute in parallel, whereas both b1 and b2 overlap with the cowns required
by b3 and thus b3 will only execute after both b1 and b2. By similar reasoning, b4
can only execute after b3 (and thus also after b1). The causal ordering offered by
BoC lets programmers reason about orderings also of nested behaviours. There
are interesting design patterns that have been explored in other literature on
BoC [8, 9]. We do not explore causal ordering further in this paper.

1 when(s)<<[=](acquired<Account> s){ /∗ b1 ∗/ };
2 when(r)<<[=](acquired<Account> r){ /∗ b2 ∗/ };
3 when(s, r)<<[=](acquired<Account> s, acquired<Account> r){/∗ b3 ∗/};
4 when(s)<<[=](acquired<Account> s){ /∗ b4 ∗/ };

Listing 3.5: Partially-ordered behaviours
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3.2 Behaviour-Oriented Concurrency is Concurrent Procedural Programming

Just as actor programs can be viewed as marrying objects with concurrency in
object-oriented programming, BoC can be viewed as marrying procedures with
concurrency. A BoC program is constructed as a collection of behaviours which
define the cowns they require and the operations that they will perform on these
cowns; the programmer only needs to define these operations and does not have
to consider the complexities of synchronisation, deadlocks and so on.

Finally, BoC can also be used to simulate actor programs. Actor programs
can be translated into BoC programs by using one cown per actor and creating
behaviours which operate over this isolated actor state. The program sketched in
Listings 3.1 and 3.2 behaves exactly like the actor program in Listing 2.1. In the
next two sections we show that this simulation relation also holds formally.

4 From Actors to Behaviour-Oriented Concurrency

In this section we explain behaviour-oriented concurrency formally in terms of
actors. We do so by starting from a high-level actor semantics, gradually changing
it until we have a formal semantics of BoC that is equivalent to previous work [9].
In Section 5 we prove that for each change the updated semantics simulates the
previous semantics, with the corollary that BoC can simulate the actor model.

The changes made to the actor semantics do not reflect how BoC was actually
developed, but each change represents an important insight into its design. Our
goal is to highlight the similarities and differences between the actor model and
BoC and show how BoC generalises the actor model.

The rest of this section is structured as follows. Section 4.1 presents the
semantics of traditional actors. Section 4.2 moves all messages into a single global
data structure, making scheduling a centralised concern instead of a concern spread
across all actors. Section 4.3 makes actors ephemeral, releasing the resources of
an actor whenever it is idle. Section 4.4 introduces the ability for messages to
have multiple receivers, producing a semantics that is equivalent to BoC. Finally,
Section 4.5 discusses how to formalise isolated actor states.

4.1 Traditional Actors, Formally

The focus in our formal development is on actors and BoC as concurrency models
that go on top of some otherwise sequential language. We are not interested in
the details of the underlying language, so we keep it abstract. The underlying
language is the same for all the actor semantics and will only change slightly for
BoC (cf. Section 4.4).

We use E as the state of a sequential process, which could be as simple as an
expression or more complex such as a stack with local variables and other state.
We use h as a global heap that the underlying language operates over. We assume
the existence of a relation ι ⊢ E, h ↪→ E′, h′ representing a small-step evaluation
of some sequential process E (to E′), operating on the heap h (resulting in h′).
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The relation also includes the identifier ι of the running actor, for example to
allow the semantics of the underlying language to restrict which data in the heap
h can be accessed by the process, as exemplified in Section 4.5.

In order to interact with the concurrency model, the underlying language can
also take two kinds of effect-producing steps. The relation ι ⊢ E, h ↪→create ι′

E′, h′ represents the effect of creating an actor with identifier ι′. The step ι ⊢
E, h ↪→send ι′ E′′ E′, h′ represents sending a message containing E′′ to an actor
with identifier ι′.

Figure 2 shows the syntax and semantics of the actor model. An actor a
consists of its identifier ι, the state of its currently executing behaviour e, and its
message queue q. The e can be a sequential process E, or ϵ if the actor is idle.
Each message in the message queue q is represented by another E. A configuration
of the actor model consists of its set of actors A and the global heap h. Each rule
selects a single actor from A, using ⊎ to mean that there is no other actor with
the same identifier in A:

Definition 1. Disjoint union by address.

A ⊎ (ι, e, q) ≜
{

A ∪ (ι, e, q) if ι ̸∈ {ι′ | (ι′, e′, q′) ∈ A}
undefined otherwise

There are five rules that can step an actor. In rule Step, an actor ι executes
a single step without producing any effect (other than the updated heap). In rule
End, an actor turns idle when its current behaviour is finished, a predicate that
holds when no further sequential steps are possible. In rule Recv, an idle actor
proceeds by processing the next message in its queue. In rule Create, an actor
produces the create effect, which results in a new idle actor with an empty queue
being added to the set of actors (note that the definition of ⊎ ensures that the
identifier ι′ is not in A). Finally, in rule Send, an actor produces the send effect,
which results in the specified message being added to the queue of the receiver
(the message is appended through a slight abuse of notation). The second premise
of the rule is there to handle self sends: if ι = ι′ then A = A′ and the message is
added to the message queue of ι, otherwise ι is one of the actors in A′.

We argue that this semantics captures the essence of actors as a concurrency
model, with just enough detail about the underlying language to allow interaction
(through the create and send effects). The isolated state of an actor is represented
by its identifier ι, and this state is coupled with the actor as a unit of concurrency:
an actor with identifier ι will only ever take steps ι ⊢ E, h ↪→ E′, h′, and sending a
message to this actor is the only way to make such a step happen. Some features
of actor systems, such as selective receives and messages being delivered out-of-
order, are not captured explicitly by our semantics but can be modelled in the
underlying language by adding information in the local state E or global state h.

4.2 Processes with a Shared Message Queue

Our main motivation for BoC is decoupling the units of isolation and concurrency.
In order to synchronise multiple concurrent entities, we need to have a centralised
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a ::= (ι, e, q)
e ::= E | ϵ

q ::= E :: q | ϵ
A ∈ P(a)

ι ⊢ E, h ↪→ E′, h′

Step
A ⊎ (ι, E, q), h⇝a A ⊎ (ι, E′, q), h′

finished(E)
End

A ⊎ (ι, E, q), h⇝a A ⊎ (ι, ϵ, q), h

Recv
A ⊎ (ι, ϵ, E :: q), h⇝a A ⊎ (ι, E, q), h

ι ⊢ E, h ↪→create ι′ E′, h′

Create
A ⊎ (ι, E, q), h⇝a A ⊎ (ι, E′, q) ⊎ (ι′, ϵ, ϵ), h′

ι ⊢ E, h ↪→send ι′ E′′ E′, h′ A ⊎ (ι, E′, q) = A′ ⊎ (ι′, e, q′)
Send

A ⊎ (ι, E, q), h⇝a A′ ⊎ (ι′, e, q′ :: E′′), h′

Figure 2: Syntax and high-level semantics of traditional actors

view of all pending work in the system. This is hard when each actor has their
own message queue. The first change we make to our actor semantics is therefore
to merge all queues into a single global one. Since we will be deviating from the
previous definition of an actor, we will be using the term process in place of actor
going forward. Note that we are using processes to implement an actor system in
Sections 4.2 and 4.3.

Figure 3 shows the syntax and semantics after this modification. Processes,
written as AM to distinguish them from actors in the previous semantics, now
only contain an identifier and a currently running expression. The configuration
is extended to contain a list M of messages in flight, each message containing the
identifier of the receiving process and a sequential process E as before.

The rules Step, End, and Create are the same as before as they do
not concern sending or receiving messages. In rule Recv an idle process starts
processing its own next message in the global queue (we slightly abuse notation
to concatenate M1 and M2). In rule Send a process produces the send effect,
which results in a message addressed to specified process being appended to the
global message queue.

4.3 Ephemeral Processes

Looking at the processes in Figure 3, there is no persistent state in a process
after it has finished its running behaviour4. This is in line with our end goal of
decoupling the units of isolation and concurrency: once a behaviour over some
isolated state is done we want to allow other behaviours to run over that same
4 A process may have persistent state in h, but this is not stored in the process itself.
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aM ::= (ι, e)
e ::= E | ϵ

M ::= (ι, E) :: M | ϵ
AM ∈ P(aM )

ι ⊢ E, h ↪→ E′, h′

Step
A ⊎ (ι, E), M, h⇝m A ⊎ (ι, E′), M, h′

finished(E)
End

A ⊎ (ι, E), M, h⇝m A ⊎ (ι, ϵ), M, h

(ι, _) ̸∈ M1
Recv

A ⊎ (ι, ϵ), M1 :: (ι, E) :: M2, h⇝m A ⊎ (ι, E), M1 :: M2, h

ι ⊢ E, h ↪→create ι′ E′, h′

Create
A ⊎ (ι, E), M, h⇝m A ⊎ (ι, E′) ⊎ (ι′, ϵ), M, h′

ι ⊢ E, h ↪→send ι′ E′′ E′, h′

Send
A ⊎ (ι, E), M, h⇝m A ⊎ (ι, E′), M :: (ι′, E′′), h′

Figure 3: The syntax and semantics of actors with a centralised message queue.
The actor set AM is written as A to reduce clutter.

and possibly other pieces of isolated state. Thus we want to “release” isolated
state when it is not being accessed. We model this in our semantics by making
processes ephemeral. This means that processes are removed as soon as they finish
a behaviour and are started up again whenever a new message needs processing.

Figure 4 shows the semantics of ephemeral processes (the syntax is the same
as in the previous section). Rules Step and Send are identical to the previous
semantics. In rule End a process is removed when its behaviour is finished
(instead of making it idle as previously). In rule Start, which corresponds the
previous rule Recv, a message is selected with a recipient that is not running
in A and that does not have another message earlier in the queue. A process is
started up to run that message. Finally, we ponder what it means to create a
process when processes are ephemeral. Since we start processes when needed and
remove them as soon as they are done, creating a process is no longer meaningful.
In rule Create, the create effect is simply ignored.

4.4 Behaviour-Oriented Concurrency, Formally

We are now ready to define the semantics of behaviour-oriented concurrency. The
main difference to the previous semantics is that messages can now have multiple
receivers. This means that we need to start by changing our underlying language
so that we can spawn behaviours with more than one recipient. While we are at
it, we will also remove the create effect since the last semantics made it a no-op.

We use Eb as the state of a sequential process of our new underlying language
and assume that it operates over some global heap hb. We assume the existence
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ι ⊢ E, h ↪→ E′, h′

Step
A ⊎ (ι, E), M, h⇝e A ⊎ (ι, E′), M, h′

finished(E)
End

A ⊎ (ι, E), M, h⇝e A, M, h

(ι, _) ̸∈ A ∪ M1
Start

A, M1 :: (ι, E) :: M2, h⇝e A ⊎ (ι, E), M1 :: M2, h

ι ⊢ E, h ↪→create ι′ E′, h′

Create
A ⊎ (ι, E), M, h⇝e A ⊎ (ι, E′), M, h′

ι ⊢ E, h ↪→send ι′ E′′ E′, h′

Send
A ⊎ (ι, E), M, h⇝e A ⊎ (ι, E′), M :: (ι′, E′′), h′

Figure 4: Semantics of ephemeral processes

of two stepping relations, one that touches the heap ῑ ⊢ Eb, hb ↪→ Eb
2, hb

2 (we use
ῑ for a set of zero or more identifiers) and one that produces an effect spawning
a behaviour with multiple receivers ῑ ⊢ Eb, hb ↪→spawn ῑ′ Eb

3
Eb

2, hb
2. We use the

same kind of identifiers ι as for the actor semantics to highlight their connection,
even though there is no longer a concept of an actor. Here we think of ι as the
identifier of some isolated resource.

Figure 5 shows the syntax and semantics of behaviour-oriented concurrency.
Behaviours b consist of a set of resource identifiers ῑ and a currently running
sequential process Eb. There is a global list of pending behaviours P as well as a
set of currently running behaviours R. We use a similar version of the disjoint
union from before, but extended to handle multiple identifiers:

Definition 2. Disjoint union by held resources.

R ⊎ (ῑ, E) ≜
{

R ∪ (ῑ, E) if ῑ ∩ {ι | ι ∈ ῑ ∧ (ῑ, E) ∈ R} = ∅
undefined otherwise

The rules are very similar to the ephemeral processes except that each running
behaviour is associated with multiple identifiers ῑ. In the rule Start a pending
behaviour starts running, assuming none of its required resources are either
currently running (in R) or have been scheduled earlier (in P1). Note that this is
analogous to a message receive in the ephemeral process model, but with multiple
receivers. In the rule Spawn a new behaviour is spawned and added to the list
of pending behaviours. Note again that this is analogous to a message send in
the ephemeral process model, but with multiple receivers.

Because each behaviour can now synchronise over any number of resources,
this concurrency model can express concurrent dependencies that are not easily
expressible in the actor model. However, if we limit ourselves to always requiring
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b ::= (ῑ, Eb)
P ::= b :: P | ϵ
R ∈ P(b)

ῑ ⊢ E, h ↪→ E′, h′

Step
R ⊎ (ῑ, E), P, h⇝b R ⊎ (ῑ, E′), P, h′

finished(E)
End

R ⊎ (ῑ, E), P, h⇝b R, P, h

{ι | (ι, _) ∈ R ∪ P1} ∩ ῑ = ∅
Start

R, P1 :: (ῑ, E) :: P2, h⇝b R ⊎ (ῑ, E), P1 :: P2, h

ῑ ⊢ E, h ↪→spawn ῑ′,E′′ E′, h′

Spawn
R ⊎ (ῑ, E), P, h⇝b R ⊎ (ῑ, E′), P :: (ῑ′, E′′), h′

Figure 5: Syntax and semantics of behaviour-oriented concurrency. We write E
and h instead of Eb and hb to avoid clutter.

exactly one resource we get a concurrency model that simulates the actor model:
each actor is represented by a singleton resource and each message is represented
by a behaviour on that resource. We formalise this intuition in Section 5.

4.5 Formalising Isolated State

In all our semantics, the underlying language is kept abstract. This means that
the concept of isolation is also kept abstract. While many actor systems achieve
data-race freedom through isolation, it is not required for reasoning about actors
as a concurrency model. In this section we give an example of how the underlying
language of the actor semantics in Figure 2 could be defined so that each actor
operates on its own local heap. For simplicity, we still keep all other details about
the underlying language abstract.

The actor semantics works on a global heap h. We instantiate this heap as
h ≜ ι × H, a set of tuples containing an actor identifier ι and a heaplet H, which
could for example map names to values. The intuition is that the tuple (ι, H)
contains the isolated state of actor ι in the heaplet H. We assume the existence
of a relation E, H ↪→ E′, H ′ representing a small-step evaluation of a sequential
process E in heaplet H. We use this relation to instantiate the previously assumed
small-step evaluation used in the Step rule (using ⊎ in a similar manner as
before):

E, H ↪→ E′, H ′
Eval

ι ⊢ E, h ⊎ (ι, H) ↪→ E′, h ⊎ (ι, H ′)
This rule uses the ι to select the right heaplet H from the global heap h and
evaluates only under that heaplet in a frame-rule-like fashion. The rule with the
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create effect ι ⊢ E, h ↪→create ι′ E′, h′ would extend h with a new empty heaplet
associated with the new actor ι′, meaning an actor would always be created
together with its heaplet. The rule for sending messages does not need to be
aware of heaplets.

Again, we note that our actor semantics does not require actors operating on
isolated state, but it supports it as exemplified here. Section 6.2 brings up some
existing actor systems that enforce isolated state.

5 Meta-Theory: Simulation Theorems

In this section we prove a number of simulation theorems about the semantics
in Section 4 with the final corollary that the semantics of behaviour-oriented
concurrency in Figure 5 simulates the actor semantics in Figure 2.

5.1 Shared-Queue Processes

The actor semantics in Figure 3 is equivalent to the semantics of shared-queue
processes in Figure 2. We could prove a bisimulation, but since our end goal is
showing that BoC can simulate actors we will be stop at proving a simulation
here as well. We define a similarity relation R1 which relates actors from A with
processes in AM and their global message queue M :

Definition 3. Similarity of traditional actors and shared-queue processes. A set
of traditional actors A is similar to a set of processes AM with a shared message
queue M , written R1(A, AM , M), iff:

1. A has an actor (ι, e, q) for some q iff AM has a process (ι, e),
2. for each message (ι, E) in M , there is some process (ι, e) in AM ,
3. for each actor (ι, e, q), filtering only the messages for ι from M yields q.

The first property states that dropping the local queues from the actors in
A result in the same queue-less processes as in AM . The second property states
that every message in M has a valid address (the identifier of an existing process).
The third property states that the local queue of each actor ι can be recreated
by filtering only the messages addressed to ι in M .

We show that each step with the traditional actors corresponds to a step from
a similar configuration in the semantics with the centralised queue and that the
resulting configurations are also similar:

Theorem 1 (Processes with a shared queue simulate traditional actors).
If R1(A, AM , M) and A, h⇝a A2, h2, then there exists AM

2 and M2 such that
AM , M, h⇝m AM

2 , M2, h2 and R1(A2, AM
2 , M2).

The proof is by cases on the rule used to step A. The cases for Step and
End are trivial after using the first property of R1 to find the corresponding
process in AM . In the case for Create, in order to satisfy the third property of
R1, we make use of the second property of R1 to ensure that there are no spurious
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messages for the newly created process already in M . In the case for Recv we
use third property of R1 to get that the first message in the local message queue
is also the first message addressed to that process in M . Removing that message
from both queues preserves similarity. Finally, in the case for Send we note that
similarity is preserved when adding a message to the end of the global queue M
and adding a message to the corresponding actor’s local queue in A.

5.2 Ephemeral Processes

Because process creation is ignored, the ephemeral processes in Figure 4 are not
equivalent to the persistent processes in Figure 3: creating the same process twice
is not allowed with persistent processes. We can however prove that ephemeral
processes simulate persistent processes by setting up a similarity relation R2
which relates processes in AM with ephemeral processes (written as Ae):

Definition 4. Similarity of shared-queue processes and ephemeral processes.
A set of processes AM with a shared queue is similar to a set of ephemeral
processes Ae, written R2(AM , Ae), iff:

1. for all processes (ι, E) in AM we have (ι, E) in Ae,
2. for all idle processes (ι, ϵ) in AM we have no process with identifier ι in Ae.

The first property ensures that each running persistent process corresponds to
a running ephemeral process. The second property ensures that any idle persistent
process does not have an ephemeral process running another behaviour.

We show that when starting from similar configurations, each step in AM has
a corresponding step in Ae that preserves similarity.

Theorem 2 (Ephemeral processes simulate processes with a shared queue).
If R2(AM , Ae) and AM , M, h⇝m AM

2 , M2, h2, then there exists Ae
2 such that

Ae, M, h⇝e Ae
2, M2, h2 and R2(AM

2 , Ae
2).

The proof is by cases on which rule was used to step AM . The cases for Step
and Send are trivial. In the case for End the process turns idle which preserves
similarity when its ephemeral counterpart is removed. Similarly, in the case for
Recv we know that there is no ephemeral process in Ae corresponding to the
idle process in AM , so the premise of the Start rule is satisfied and the use
of ⊎ is well defined. In the case for Create, an idle process is created, which
preserves similarity with the unextended Ae due to the second property of R2.

5.3 Behaviour-Oriented Concurrency

The similarity relation between ephemeral processes (Figure 4) and behaviour-
oriented concurrency (Figure 5) is slightly more involved since we have different
underlying languages. We start by assuming a similarity relation between the
underlying languages. This can be thought of as the properties of an imagined
compilation of E processes into Eb processes.
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Parameter 1 Similarity of underlying languages. We assume the existence of a
similarity relation between the two underlying languages, written Rul(E, Eb), as
well as a similarity relation between their respective heaps, written Rh(h, hb).
The similarity relations are assumed to have the following properties:

1. If Rul(E, Eb), Rh(h, hb) and ι ⊢ E, h ↪→ E′, h′ for some ι, then there exists
Eb

2 and hb
2 such that {ι} ⊢ Eb, hb ↪→ Eb

2, hb
2, Rul(E′, Eb

2) and Rh(h′, hb
2),

2. If Rul(E, Eb), Rh(h, hb) and ι ⊢ E, h ↪→create ι′ E′, h′ for some ι′, then there
exists Eb

2 and hb
2 such that {ι} ⊢ Eb, hb ↪→ Eb

2, hb
2, Rul(E′, Eb

2) and Rh(h′, hb
2),

3. If Rul(E, Eb), Rh(h, hb) and ι ⊢ E, h ↪→send ι′,E′′ E′, h′ for some ι′ and E′′,
then there exists Eb

2, Eb
3 and hb

2 such that {ι} ⊢ Eb, hb ↪→spawn {ι′},Eb
3

Eb
2, hb

2,
Rul(E′, Eb

2), Rh(h′, hb
2) and Rul(E′′, Eb

3),
4. If Rul(E, Eb) and finished(E), then finished(Eb).

The first property states that evaluation in the context of an process ι cor-
responds to evaluation in the context of a singleton resource {ι}. The second
property states that producing a create effect corresponds to some non-effectful
computation. The third property states that producing a send effect corresponds
to producing a spawn effect with a singleton resource and a similar behaviour.
The fourth property states that a sequential process is finished when its similar
counterpart is.

The simulation relation between BoC and ephemeral processes can now be
formulated as follows.

Definition 5. Similarity of ephemeral processes and behaviour-oriented concur-
rency. A set of ephemeral processes Ae with a shared queue M is similar to a set
of running behaviours R and pending behaviours P , written R3(Ae, M, R, P ), iff:

1. for all processes (ι, E) in Ae we have ({ι}, Eb) in R, such that Rul(E, Eb),
2. the number of processes in Ae is the same as the number of running behaviours

in R,
3. for each message (ι, E) in M there is a pending behaviour ({ι}, Eb) at the

corresponding index of P such that Rul(E, Eb),
4. the number of pending messages in M is the same as the number of pending

behaviours in P .

The first two properties state that there is a one-to-one correspondence
between running processes and running behaviours. The second two properties
state that there is a one-to-one correspondence between pending messages and
pending behaviours. With this similarity relation we can now show a simulation
between BoC and ephemeral processes.

Theorem 3 (Behaviour-oriented concurrency simulates ephemeral processes).
If R3(Ae, M, R, P ), Rh(h, hb) and Ae, M, h⇝e Ae

2, M2, h2, then there exists R2,
P2 and hb

2 such that R, P, hb⇝b R2, P2, hb
2 and R3(Ae

2, M2, R2, P2) and Rh(h2, hb
2).

The proof is by cases on which rule was used to step Ae. In each case we
use the first two properties of R3 to ensure that each process has a correspond-
ing behaviour. By the first property of Parameter 1 this behaviour can take a
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similarity-preserving step. In the case for Step this is enough to show preser-
vation of similarity. In the case for Create we additionally use the second
property of Parameter 1 to get that we can take a corresponding step. In the case
for End we use the fourth property of Parameter 1 to get that the corresponding
behaviour is also finished.

In the case for Start we use the second two properties of R3 to get that there
is a corresponding pending behaviour. Because all behaviours have a singleton
resource the premise is transferable to the set-disjointness formulation in BoC.
Finally, in the case for Send we use the third property of Parameter 1 to get
that the send effect corresponds to a spawn effect of a similar behaviour with a
singleton resource.

We can now formulate our final corollary which states that BoC simulates
actors when restricted to singleton resource sets.

Theorem 4 (Behaviour-oriented concurrency simulates traditional actors).
If Rul(E, Eb), Rh(h, hb) and {(ι, E, ϵ)}, h⇝*

a A′, h′, then there exists R′, P ′ and
hb

2 such that {({ι}, Eb)}, ∅, hb⇝*
b R′, P ′, hb

2 and Rh(h′, hb
2).

Proof is by induction over the⇝*
a relation (the reflexive and transitive closure

of⇝a). With a single actor and an empty message queue it is trivial to show that
we can use R3, R2 and R1 to connect the two semantics. Through the simulation
theorems we have shown that similarity is preserved by each step, so each step
in the traditional actor semantics has a corresponding step in BoC.

6 Discussion

Comparing the actor semantics in Figure 2 and the semantics of behaviour-
oriented concurrency in Figure 5, the flexibility that comes with decoupling the
units of isolation and concurrency is visible in how each behaviour in BoC can run
with an arbitrary number of resources ῑ in rule Step instead of just the one. Any
set of running behaviours can be thought of as a set of temporary actors whose
local state consists of the union of the held resources. When a behaviour finishes
in rule End, these resources are freed up to be used by in other configurations
by other behaviours. This reconfigurability is a key difference between actors and
BoC.

From a programming point of view, even though we have shown that behaviour-
oriented concurrency can simulate actors, there is a philosophical difference in
how an actor is a persistent entity with a stable identity. In behaviour-oriented
concurrency, a behaviour is anonymous and has no memory after it finishes, except
for what may be encoded into the resources it handles. This difference is analogous
to the difference between the strong encapsulation of objects in object-oriented
programming and the handling of dynamic data in procedural programming.

Going back to the bank transfer example from Section 2 we can reinforce the
differences between the actor and BoC models by comparing their executions. We
do so using two diagrams in Figure 6: Figure 6a for actors and Figure 6b for BoC.
These diagrams focus on the order of events rather than mirroring the syntactic
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representation in the semantics. However, the syntactic representations allow the
orders presented in the diagrams.

Figure 6a demonstrates the execution of three actors, the sender s, receiver
r, and coordinator c. The actors coordinate the transfer of money from s to r
using two-phase commit. As per Figure 2, each of the messages of an actor are
totally ordered (with respect to each other) based on the order in which they
were received. Once received, a message can be processed at some arbitrary time
in the future, but not before earlier received messages, 5 nor whilst an actor is
processing another message. Message sends are instantaneous. Note that there are
several different possible executions but two-phase commit ensures the outcome
is always the same.

Figure 6b demonstrates the execution of a BoC program with three cowns:
the sender s, receiver r, and coordinator c. The program transfers money from
s to r, with c initiating the transfer. As per Figure 5, all behaviours are totally
ordered by a spawn order (but partially ordered when we consider the behaviours’
required resources). We represent a behaviour having access to multiple resources
by presenting the times in which a cown is available or in use by a running
behaviour (which implicitly acquires and releases the cowns at the start and end
of its execution).

The two figures demonstrate that the actor behaviour executes using only the
actors’ states whilst BoC behaviours can access multiple states. Actor messages
have a partial order whilst BoC programs have a total spawn order, and – in this
example – that the actor program requires more messages to achieve the same
outcome as the BoC program.

6.1 Working Around the Actor Model

Many actor systems have features that sidestep the pure actor model. Erlang
ensures isolation by copying all data passed in messages but also features the
Erlang Term Storage (ETS), a mutable map data type that can be shared between
actors [3]. With the ETS, actors can communicate without using message passing.
Operations on the ETS are synchronised, meaning that they are subject to race
conditions but not data races. The same properties are inherited by languages
building on the Erlang runtime, such as Elixir [12].

A survey on actor programs in Scala shows that programmers frequently mix
the actor model with other concurrency constructs such as futures and threads,
either due to limitations of the actor libraries used or limitations of the actor
model itself [24]. There are extensions of actors in Scala to support transactional
memory [15] and fork/join parallelism [17]. The Chocola language, an extension
of Clojure, also allows mixing actors with futures and transactions [23]. The C++
Actor Framework (CAF) complements message passing with streams that can be
used to send data between actors [5].

An approach to avoiding the performance problem of coarse-grained actors is
permitting actors to encapsulate several threads of control. This either comprom-
5 Recall that these semantics do not consider selective receives
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Figure 6: Comparing bank transfer executions

ises simplicity by relying on means other than isolation to ensure that behaviours
do not interfere, or compromises correctness if no such means is added. This
complexity may spill into the implementation. Examples of actor systems to go
down this route include Joelle [18] which relied on an effect system to reason
about what behaviours were permitted to execute in parallel in a single actor
and Encore [7]. The latter introduced the notion of a “hot object” whose beha-
viours were implemented using lock-free algorithms [6] and turned message sends
into synchronous method calls under the hood. The latter controversial design
stemmed from Encore’s runtime system being based on Pony’s, which scheduled
actors rather than individual messages (which would be a more reasonable design
when actors are parallel). Encore notably also needed to invent a separate memory
management scheme [26] to handle concurrent accesses inside an actor. These
examples are anecdotal evidence that trying to address performance issues in
actor systems by making actors parallel comes with significant complexity costs.

6.2 Isolation in Practice

Ensuring isolation (or similar concepts) has been the focus of a number of research
and engineering efforts. Here we explore a few of these efforts to convince the reader
that the required isolation we have claimed thus far is a realistic expectation.

Behaviour-oriented concurrency was co-designed with a static type system
called Reggio which guarantees that the heap is a forest of regions, each region
with a single external entry point [4]. This type system enforces strong guarantees
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on the references that may exist in a program, and how data can be moved around
the program. In the semantics in Figure 5, each ι could represent the unique entry
point to the root of a region tree. A dynamic application of this type system is
also being pursued in Python [20].

Erlang and Elixir ensure that there is no shared data by passing all data by
value [3, 12]. Another approach is taken by Pony and Encore which both feature
a shared heap, but whose type systems ensure that data passed by reference in
messages is either immutable or is passed together with its ownership so that at
most one actor at a time can access the data [7, 10, 22]. Other actor systems that
support ownership transfer of data between actors include Joelle [18], Kilim [21]
and LaCasa [14].

Rust has been introducing [11] many programmers to ownership and borrowing.
In Rust, data must have at most one owner, providing a single unique entry point
to that data, but mutable and immutable references can be borrowed by those
that need it (with the guarantee that the reference cannot escape).

7 Conclusion

In this paper we have examined behaviour-oriented concurrency through the lens
of the actor model. We have shown that the key difference between the two comes
from the decoupling of the unit of isolation from the unit of concurrency. Using
Actors, programmers have to decide on the granularity of isolation at the point of
construction of an actor. In BoC on the other hand, this decision can be delayed
until the point of construction of the behaviour. This frees the programmer from
the need for implementing complicated synchronisation protocols.

The actor model can be thought of as a natural extension of object-oriented
programming to a concurrent setting; an actor encapsulates its state just as an
object does, but synchronises concurrent messages by running them with its own
thread of control, thereby avoiding data races. In the same way, BoC can be
thought of as an extension of procedural programming to a concurrent setting. A
behaviour is a concurrent one-off procedure which temporarily encapsulates its
required resources. In order to synchronise behaviours and avoid data races, the
runtime tracks the dependencies of the required resources of each behaviour and
schedules them based on these dependencies.

An important feature of the actor model is that it scales from single-node
concurrent programs to distributed programs. There is currently no story for
distribution in BoC, and the reconfigurability of isolated state and the need for a
centralised view of the available work makes this non-trivial. It remains a venue
of future work to investigate an adaptation of BoC that works for distributed
computing.
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