OOlong: An Extensible Concurrent Object Calculus

Elias Castegren
Tobias Wrigstad
elias.castegren@it.uu.se
tobias.wrigstad@it.uu.se

ABSTRACT

We present OOlong, an object calculus with interface inheritance,
structured concurrency and locks. The goal of the calculus is exten-
sibility and reuse. The semantics are therefore available in a version
for IKTEX typesetting (written in Ott), and a mechanised version for
doing rigorous proofs in Cogq.

KEYWORDS
Object Calculi, Semantics, Mechanisation, Concurrency

ACM Reference format:

Elias Castegren and Tobias Wrigstad. 2018. OOlong: An Extensible Con-
current Object Calculus. In Proceedings of SAC 2018: Symposium on Applied
Computing , Pau, France, April 9-13, 2018 (SAC 2018), 8 pages.
https://doi.org/10.1145/3167132.3167243

1 INTRODUCTION

When reasoning about object-oriented programming, object calculi
are a useful tool for abstracting away many of the complicated de-
tails of a full-blown programming language. They provide a context
for prototyping in which proving soundness or other interesting
properties of a language is doable with reasonable effort.

The level of detail depends on which concepts are under study.
One of the most used calculi is Featherweight Java, which models
inheritance but completely abstracts away mutable state [12]. The
lack of state makes it unsuitable for reasoning about any language
feature which entails object mutation, and many later extensions of
the calculus re-adds state as a first step. Other proposals have also
arisen as contenders for having “just the right level of detail” 3, 15,
21].

This paper introduces OOlong, a small, imperative object calculus
for the multi-core age. Rather than modelling a specific language,
OOlong aims to model object-oriented programming in general,
with the goal of being extensible and reusable. To keep subtyping
simple, OOlong uses interfaces and omits class inheritance and
method overriding. This avoids tying the language to a specific
model of class inheritance (e.g., Java’s), while still maintaining an
object-oriented style of programming. Concurrency is modeled in
a finish/async style, and synchronisation is handled via locks.

The semantics are provided both on paper and in a mechanised
version written in Coq. The paper version of OOlong is defined in

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SAC 2018, April 9-13, 2018, Pau, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5191-1/18/04...$15.00

https://doi.org/10.1145/3167132.3167243

Ott [20], and all type rules in this paper are generated from this
definition. To make it easy for other researchers to build on OOlong,
we are making the sources of both versions of the semantics publicly
available.

With the goal of extensibility and re-usability, we make the
following contributions:

e We define the formal semantics of OOlong, motivate the
choice of features, and prove type soundness (§ 2-5).

e We provide a mechanised version of the full semantics and
soundness proof, written in Coq (§ 6).

e We provide Ott sources for easily extending the paper version
of the semantics and generating type rules in KIgX (§ 7).

o We give two examples of how OOlong can be extended,;
support for assertions, and more fine-grained locking based
on regions (§ 8).

2 RELATED WORK

The main source of inspiration for OOlong is Welterweight Java by
Ostlund and Wrigstad [15], a concurrent core calculus for Java with
ease of reuse as an explicit goal. Welterweight Java is also defined
in Ott, which facilitates simple extension and KIgX typesetting, but
only exists as a calculus on paper. There is no online resource for
accessing the Ott sources, and no published proofs except for the
sketches in the original treatise. OOlong provides Ott sources and
is also fully mechanised in Coq, increasing reliability. Having a
proof that can be extended along with the semantics also improves
re-usability. Both the Ott sources and the mechanised semantics
are publicly available online [5]. OOlong is more lightweight than
Welterweight Java by omitting mutable variables and using a single
flat stack frame instead of modelling the call stack. Also, OOlong is
expression-based whereas Welterweight Java is statement-based,
making the OOlong syntax more flexible. We believe that all these
things make OOlong easier to reason and prove things about, and
more suitable for extension than Welterweight Java.

Object calculi are used regularly as a means of exploring and
proving properties about language semantics. These calculi are
often tailored for some special purpose, e.g., the calculus of de-
pendent object types [1], which aims to act as a core calculus for
Scala, or OrcO [16], which adds objects to the concurrent-by-default
language Orc. While these calculi serve their purposes well, their
tailoring also make them fit less well as a basis for extension when
reasoning about languages which do not build upon the same fea-
tures. OOlong aims to act as a calculus for common object-oriented
languages in order to facilitate reasoning about extensions for such
languages.

https://doi.org/10.1145/3167132.3167243
https://doi.org/10.1145/3167132.3167243

SAC 2018, April 9-13, 2018, Pau, France

FJ | C1J | ConJ | MJ | LJ | WJ | OOlong
State X X X X X X
Statements X X X
Expressions | X X X X X
Class Inheritance | X X X X X X
Interfaces X X
Concurrency X X X
Stack X X
Mechanised | x* X X
IKTEX sources X X X

Figure 1: A comparison between Featherweight Java,
ClassicJava, ConcurrentJava, Middleweight Java, Light-
weight Java, Welterweight Java and OOlong. The original
formulation of Featherweight Java was not mechanised, but
later extensions have been mechanised in Coq [14].

2.1 Java-based Calculi

There are many object calculi which aim to act as a core calculus
for Java. While OOlong does not aim to model Java, it does not
actively avoid being similar to Java. A Java programmer should feel
comfortable looking at OOlong code, but a researcher using OOlong
does not need to use Java as the model. Figure 1 surveys the main
differences between different Java core calculi and OOlong. In con-
trast to many of the Java-based calculi, OOlong ignores inheritance
between classes and instead uses only interfaces. While inheritance
is an important concept in Java, we believe that subtyping is a much
more important concept for object-oriented programming in gen-
eral. Interfaces provide a simple way to achieve subtyping without
having to include concepts like overriding. With interfaces in place,
extending the calculus to model other inheritance techniques like
mixins [11] or traits [19] becomes easier.

The smallest proposed candidate for a core Java calculus is
probably Featherweight Java [12], which omits all forms of as-
signment and object state, focusing on a functional core of Java.
While this is enough for reasoning about Java’s type system, the
lack of mutable state precludes reasoning about object-oriented
programming in a realistic way. Extensions of this calculus often
re-add state as a first step (e.g., [2, 14, 18]). The original formula-
tion of Featherweight Java was not mechanised, but a later varia-
tion omitting casts and introducing assignment was mechanised in
Coq (~2300 lines) [14]. When developing mixins, Flatt et al. define
ClassicJava [11], an imperative core Java calculus with classes and
interfaces. It has been extended several times (e.g., [8, 22]). Flanagan
and Freund later added concurrency and locks to ClassicJava in
ConcurrentJava [10], but omitted interfaces. To the best of our
knowledge, neither ClassicJava nor ConcurrentJava have been
mechanised.

Bierman et al. define Middleweight Java [3], another imperative
core calculus which also models object identity, null pointers, con-
structors and Java’s block structure and call stack. Middleweight
Javais also a true subset of Java, meaning that all valid Middleweight
Java programs are also valid Java programs. The high level of detail
however makes it unattractive for extensions which are not highly
Java-specific. To the best of our knowledge, Middleweight Java was

E. Castegren & T. Wrigstad

P = IdsCdse (Programs)
Id = interface I {Msigs} (Interfaces)
| interface I extends I, I,
Cd = class C implements I { Fds Mds} (Classes)
Msig == m(x:t): 1t (Signatures)
Fd = ft (Fields)
Md = def Msig {e} (Methods)
e s= v | x| xf | xf=e (Expressions)
| x.m(e) | letx=ejine; | newC | (t)e
| finish{async{e;} async{e}}; e3
| lock(x)ine | locked,{e}
v w= null | ¢ (Values)
t = C | I | Unit (Types)
T = €| I,x:t | T,ut:C (Typing environment)

Figure 2: Syntax of OOlong. Ids, Cds, Fds, Mds and Msigs are
sequences of zero or more of their singular counterparts.
Terms in grey boxes are not part of the surface syntax but
only appear during evaluation.

never mechanised. Strni$a proposes Lightweight Java as a simpli-
fication of Middleweight Java [21], omitting block scoping, type
casts, constructors, expressions, and modelling of the call stack,
while still being a proper subset of Java. Like Welterweight Java it
is purely based on statements, and does not include interfaces. Like
OOlong, Lightweight Java is defined in Ott, but additionally uses
Ott to generate a mechanised formalism in Isabelle/HOL. A later
extension of Lightweight Java was also mechanised in Coq (~800
lines generated from Ott, and another ~5800 lines of proofs) [9].

Last, some language models go beyond the surface language
and execution. One such model is Jinja by Klein and Nipkow [13],
which models (parts of) the entire Java architecture, including
the virtual machine and compilation from Java to byte code. To
handle the complexity of such a system, Jinja is fully mechanised
in Isabelle/HOL. The focus of Jinja is different than that of calculi
like OOlong, and is therefore not practical for exploring language
extensions which do not alter the underlying runtime.

2.2 Background

OOlong started out as a target language acting as dynamic se-
mantics for a type system for concurrency control [6]. The proof
schema for this system involved translating the source language
into OOlong, establishing a mapping between the types of the
two languages, and reasoning about the behaviour of a running
OOlong program. In this context, OOlong was extended with sev-
eral features, including assertions, readers—writer locks, regions,
destructive reads and mechanisms for tracking which variables
belong to which stack frames (§ 8 outlines the addition of assertions
and regions). By having a machine checked proof of soundness for
OOlong that we could trust, the proof of progress and preserva-
tion of the source language followed from showing that translation
preserves well-formedness of programs.

OOlong: An Extensible Concurrent Object Calculus

3 STATIC SEMANTICS OF OOLONG

In this section, we describe the formal semantics of OOlong. The
semantics are also available as Coq sources, together with a full
soundness proof. The main differences between the paper version
and the mechanised one are outlined in § 6.

Figure 2 shows the syntax of OOlong. The meta-syntactic vari-
ables are x, y and this for variable names, f for field names, C for
class names, I for interface names, and m for method names. For
simplicity we assume that all names are unique. OOlong defines
objects through classes, which implement some interface. Interfaces
are in turn defined either as a collection of method signatures, or
as an “inheriting” interface which joins two other interfaces. There
is no inheritance between classes, and no overriding of methods.
A program is a collection of interfaces and classes together with a
starting expression e.

Most expressions are standard: values (null or abstract object
locations 1), variables, field accesses, field assignments, method
calls, object instantiation and type casts. For simplicity, targets
of field and method lookups must be variables, and method calls
have exactly one parameter (multiple parameters can be simulated
through object indirection). We also use let-bindings rather than
sequences and variables. Sequencing can be achieved through the
standard trick of translating eq; ez into let _ = e7 in ey (due to eager
evaluation of ep). Parallel threads are spawned with the expression
finish{async{e; } async{ez}}; e3, which runs e; and e; in parallel,
waits for their completion, and then continues with es.

The expression lock(x) in e locks the object pointed to by x for
the duration of e. While an expression locking ¢ is executed in the
dynamic semantics, it appears as locked,{e}. This way, locks are
automatically released at the end of the expression e. It also allows
tracking which field accesses are protected by locks and not.

Types are class or interface names, or Unit (used as the type of
assignments). The typing environment I' maps variables to types
and abstract locations to classes.

3.1 Well-Formed Program (Figure 3)

A well-formed program consists of well-formed interfaces and well-
formed classes, plus a well-typed starting expression. A non-empty
interface is well-formed if its method signatures only mention well-
formed types (WE-INTERFACE), and an inheriting interface is well-
formed if the interfaces it extends are well-formed (WF-INTERFACE-
EXTENDS). A class is well-formed if it implements all the methods in
its interface. Further, all fields and methods must be well-formed
(wr-cLAsS). A field is well-formed if its type is well-formed (wE-FIELD).
A method is well-formed if its body has the type specified as the
method’s return type under an environment containing the single
parameter and the type of the current this (wr-METHOD).

3.2 Types and Subtyping (Figure 4)

Each class or interface in the program corresponds to a well-formed
type (r-wr-*). Subtyping is transitive and reflexive, and is nominally
defined by the interface hierarchy of the current program (r-sus-*). A
well-formed environment I' has variables of well-formed types and
locations of valid class types (wr-env). Finally, the frame rule splits
an environment I into two sub-environments I and I'; whose
variable domains are disjoint (but which may share locations 1).

SAC 2018, April 9-13, 2018, Pau, France

+FP:t +Id +Cd ‘+Fd I—Md‘

WF-PROGRAM

(Well-formed program)

VIde Ids. + Id VY Cde Cds. + Cd ere:t
FIdsCdse: t
WF-INTERFACE WF-INTERFACE-EXTENDS
Vm(x:t):t' € Msigs. - tAF t [FI

+ interface I { Msigs } + interface [extends I1, I

‘WF-CLASS
VY m(x:t):t' € msigs (I).def m(x:t): t' { e} € Mds
V Fde Fds. + Fd VY Md e Mds.this : C + Md

+ class Cimplements I { Fds Mds }

WE-FIELD WE-METHOD
Ft this: C,x:tre:t
Ffot this: Crdefm(x:t):t' {e}

Figure 3: Well-formedness of classes and interfaces. The
helper function msigs is defined in the appendix (cf. § A.3).

This is used when spawning new threads to prevent them from
sharing variables!.

3.3 Expression Typing (Figure 5)

Most typing rules for expressions are simple. Variables are looked
up in the environment (wr-var) and introduced using let bindings
(wr-LET). Method calls require the argument to exactly match the
parameter type of the method signature (wr-carr). We require ex-
plicit casts, and only support upcasts (wr-cast). Fields are looked
up with the helper function fields (wr-seLEcT). Fields may only be
looked up in class types (as interfaces do not define fields). Field
updates have the Unit type (wr-uPDATE). Any class in the program
can be instantiated (wr-NEw). Locations can be given any super type
of their class type given in the environment (wr-Loc). The constant
null can be given any well-formed type, including Unit (wr-NULL).

Forking new threads requires that the accessed variables are
disjoint, which is enforced by the frame rule I' = I} + I (WF-F)).
Locks can be taken on any well-formed target (wr-Lock*).

4 DYNAMIC SEMANTICS OF OOLONG

Figure 6 shows the structure of the run-time constructs of OOlong.
A configuration (H;V;T) contains a heap H, a variable map V,
and a collection of threads T. A heap H maps abstract locations
to objects. Objects store their class, a map F from field names to
values, and a lock status L which is either locked or unlocked. A
stack map V maps variable names to values. As variables are never
updated, OOlong could use a simple variable substitution scheme
instead of tracking the values of variables in a map. However, the
current design gives us a simple way of reasoning about object
references on the stack as well as on the heap.

1Since variables are immutable in OOlong, this kind of sharing would not be a problem
in practice, but for extensions requiring mutable variables, we believe having this in
place makes sense.

SAC 2018, April 9-13, 2018, Pau, France

(Well-formed types)

T-WF-CLASS T-WF-INTERFACE
class CimplementsI{_} € P interfaceI{_} e P

FC FI

T-WF-INTERFACE-EXTENDS
interface [extends I, L € P

FI + Unit

T-WF-UNIT

(Subtyping)
T-SUB-CLASS
class CimplementsI{_} € P

C<:1I

T-SUB-INTERFACE-LEFT
interface I extends I, L € P

T-SUB-INTERFACE-RIGHT
interface I extends I, L € P

I<: L I< D
T-SUB-TRANS T-SUB-EQ
h <ty b <:f3 Ft
1 <:t3 t<:t
(Well-formed environment)
WF-ENV
Vx:teTl.rt Vi:CeTl.+ C
FT
e

WF-FRAME
Vy:tehL Ti(y) =t
Vy:te F3.F1(y) =t
(vardom (Iz) N vardom (I3)) = 0

L =h+I3

Figure 4: Typing, subtyping, typing environment and the
frame rule. In the latter, y abstracts over variables x and lo-
cations ! to reduce clutter. The helper function vardom ex-
tracts the set of variables from an environment (cf. § A.3).

A thread collection T can have one of three forms: Ty ||T; > e
denotes two parallel asyncs T; and T, which must reduce fully
before evaluation proceeds to e. (L, e) is a single thread evaluating
expression e. L is a set of locations of all the objects whose locks
are currently being held by the thread. The initial configuration
is (€;€;(0, e)), where e is the initial expression of the program.
A thread can also be in an exceptional state EXN. The current
semantics only supports the NullPointerException.

4.1 Well-Formedness Rules (Figure 7)

An OOlong configuration is well-formed if its heap H and stack
V are well-formed, its collection of threads T is well-typed, and
the current lock situation in the system is well-formed (wr-crc). A
heap H is well-formed under a T if all locations in I" correspond to
objects in H, all objects in the heap have an entry in T, and the fields
of all objects are well-formed under T (wr-teaP). The fields of an

E. Castegren & T. Wrigstad

(Typing Expressions)
‘WF-VAR ‘WEF-LET
FT F(x):t T'he 1t I,x:tyre:t
F'kx:t Trletx=ejiney: t
WEF-CALL
I'(x) =t Fre:rny WF-CAST
msigs (f))(m)=y:t, >t Tre:t t <t
T'+tx.m(e):t Tr(e:t
WF-SELECT WF-UPDATE
T'rx:C F'rx:C Tre:t WE-NEW
fields (O)(f) =t fields (O)(f) =t FT FC
F'rx.f:t I'k x.f =e: Unit I'tnewC:C
WEF-LOC WE-NULL
+T ry==C C<:t +T Bt
Tru:t I'+null:¢
WE-FJ
I'=h+1 INre:t1 Lite:t T're:t

T+ finish { async {e; } async {e2 } };e: ¢t

WF-LOCK
T'ktx:t

T+ lock(x)ine: ¢

WF-LOCKED

Tre:t T(t) =t
I+ locked,{e} : ¢

Tre:t

Figure 5: Typing of expressions

cfg w= (H;V;T) (Configuration)
H u= € | H,1+ obj (Heap)
\%4 x= €| Vx> o (Variable map)
T x= (L,e) | T1||Ta > e | EXN (Threads)
obj x= (C,F,L) (Objects)
F w= €| F,fmovo (Field map)
L x= locked | unlocked (Lock status)
EXN := NullPointerException (Exceptions)

Figure 6: Run-time constructs of OOlong. £ is a set of loca-
tions whose locks are held by the current thread.

object of class C are well-formed if each name of the static fields of
C maps to a value of the corresponding type (wr-FIELDs). A stack V
is well-formed under a T if each variable in ' maps to a value of the
corresponding type in V, and each variable in V has an entry in T
(wr-vARs). A well-formed thread collection requires all sub-threads
and expressions to be well-formed (wr-1-*). An exceptional state can
have any well-formed type (We-T-EXN).

The current lock situation is well-formed for a thread if all lo-
cations in its set of held locks £ correspond to objects whose lock
status is locked. Locks must be taken at most once in e (captured
by distinctLocks(e), cf- § A.3), and for each locked, in the current
expression, : must be in the set of held locks L. The parallel case
propagates these properties, and additionally requires that two par-
allel threads do not hold the same locks in their respective L. Any
locks held in the continuation e must be held by the first thread of

OOlong: An Extensible Concurrent Object Calculus

THH;VT) ot

(Well-formed configuration)

WE-CFG WE-HEAP
I'vH vV Vi:CeT.H(t) =(C,F,L)AT;C+F
T'rT:t Hbrp T Vi€ dom (H).: € dom(T) FT
TH(H;V;T): ¢t T'+H
WEF-FIELDS

fields(C) = fi: t1, ... fu: tn
T'rvi:oty, ...l Ry ty

ICHfirm v, o, fu>

WE-VARS
Vx:tel.V(x)=vATkrv:t
Vxe dom (V).x € dom(T) +T

r+v

WEF-T-ASYNC

I'rTi:t T'rT:t

‘WF-T-THREAD WF-T-EXN
T're:t T're:t Ft FT
Tt T h>e:t I'r(Le):t F'rEXN:¢

WEF-L-THREAD
Vie L.H(1) = (C, F,locked)
distinctLocks(e) Vi€ locks(e)..e L

H '_Iock (L9 e)

WF-L-ASYNC
heldLocks (T1) N heldLocks (T3) = 0
V1€ locks (e).. € heldLocks (T)
distinctLocks(e) Hvroa Th Hrou To

Hl_lock Tl || T2 >e

‘WF-L-EXN

H bou EXN

Figure 7: Well-formedness rules. Note that well-formedness
of threads is split into two sets of rules regarding expression
typing and locking respectively.

the async. This represents the fact the first thread is the one that will
continue execution after the threads join (wr-L-async). Exceptional
states are always well-formed with respect to locking (wr-L-EXN).

4.2 Evaluation of Expressions (Figure 8)

OOlong uses a small-step dynamic semantics, with the standard
technique of evaluation contexts to decide the order of evaluation
and reduce the number of rules (pyN-EvaL-cONTEXT). We use a sin-
gle stack frame for the entire program and employ renaming to
make sure that variables have unique names?. Evaluating a vari-
able simply looks it up in the stack (DYN-EVAL-vAR). A let-expression
introduces a fresh variable that it substitutes for the static name
(DYN-EVAL-LET). Similarly, calling a method introduces two new fresh
variables—one for this and one for the parameter of the method.
The method is dynamically dispatched on the type of the target
object (DYN-EVAL-CALL).

Casts will always succeed and are therefore no-ops dynamically
(DYN-EVAL-cAsT). Adding support for downcasts is possible with the

2This sacrifices reasoning about properties of the stack size in favour of simpler
dynamic semantics.

SAC 2018, April 9-13, 2018, Pau, France

(Evaluation of expressions)

cfgy = cfg,

DYN-EVAL-CONTEXT

(H;V;(L,e)) — (H;V';(L.€))
(H; V;(L,E[e])) — (H;V';(L,E['])

DYN-EVAL-VAR

V(ix)=wv
(H; V; (L, %)) — (H;V;(L,v))

DYN-EVAL-LET
x’ fresh V' = V[x]

(H; V;(L,letx = vine)) — (H;V';(L,¢))

e =e[x— x’]

DYN-EVAL-CALL
Vix)=1 H() =(C,F,L)
methods (C)(m) =y :t; — t,e
this’ fresh y’ fresh
V' = V[this’ -][y’ — v]
¢’ = e[this — this’][y — y’]

(H; Vs (L, x.m(v))) — (H;V';(L,¢"))

DYN-EVAL-CAST

(H; Vi(L.()v)) = (H; Vi(L,v)

DYN;(V)?)L—:SE;ECT H([) _ (C’ F, L)
fields(O)(f) =t F(f)=v

(H; Vi(L,x.f) = (H;Vi(L,v))

DYN'EVAL'UPD&Z‘}EC) _, H(l) _ (C’ F’ L)
fields (C)(f) =t/ H' = H[i1 - (C F[f - v],L)]

(H; V5 (L, x.f =v)) = (H;V;(£,null))

DYN-EVAL-NEW
fields(C) = fi: t1, ... fu: tn
F=fi—null, .. f; - null

ifresh H’ = H[i — (C, F, unlocked)]

(H; V;(L,new C)) — (H';V;(L,1))

DYN-EVAL-LOCK
V(x) =1 H(1) = (C, F,unlocked) 1¢ L
H' = H[1 — (C, F,locked)] L =L u{}

(H; V;(L,lock(x)ine)) — (H’;V;(L’,1locked,{e}))

DYN-EVAL-LOCK-REENTRANT

Vix)=1 H(1) = (C, F,1ocked) e L
(H; V;(L,lock(x)ine)) — (H;V;(L,e))

DYN-EVAL-LOCK-RELEASE
H(1) = (C, F,locked) L= L\{}
H’ = H[1 — (C, F,unlocked)]

(H; V;(L,locked, {v})) — (H";V;(L',v))

Figure 8: Dynamic semantics (1/2). Expressions. The evalua-
tion context E is defined as
E[e] :=x.f = o | x.m(e) |letx = o ine|(t) ® |locked,{e}

SAC 2018, April 9-13, 2018, Pau, France

gy = ofg,

DYN-EVAL-ASYNC-LEFT
(H;V;Ty) — <H/; \%48 T{)

HV;TI| T >e) — (H; VT | T >e)

(Concurrency)

DYN-EVAL-ASYNC-RIGHT
(H;V;Tz) — (H;V; Té)

(H;V;Ti || Th>e) — (H; VST || T, > e)

DYN-EVAL-SPAWN
e = finish { async {e; } async {e; } };¢3

(H; Vi(L,) = (H; Vi(L, en) [1(0, e2) > e3)

DYN-EVAL-SPAWN-CONTEXT
(H; Vi(L, e)) — (H;Vi(L, e1) [[(0, e2) > e3)

(H; Vi(L, Ele])) — (H;Vi(L, e1) |[(0, e2) > Ees])

DYN-EVAL-ASYNC-JOIN

(H; Vi(L) [I(L, V) B> e) = (HVi(L, e)

Figure 9: Dynamic semantics (2/2). Concurrency.

introduction of a new exceptional state for failed casts. Fields are
looked up in the field map of the target object (bYN-EVAL-SELECT).
Similarly, field assignments are handled by updating the field map of
the target object. Field updates evaluate to null (bYN-EVAL-UPDATE).
We have omitted constructors from this treatise. A new object has
its fields initialised to null and is given a fresh abstract location
on the heap (DYN-EVAL-NEW).

Taking a lock requires that the lock is currently available and
adds the locked object to the lock set L of the current thread. It also
updates the object to reflect its locked status (pyN-EvaL-LOCK). The
locks in OOlong are reentrant, meaning that grabbing the same lock
twice will always succeed (DYN-EVAL-LOCK-REENTRANT). Locking is
structured, meaning that a thread can not grab a lock without also
releasing it sooner or later (modulo getting stuck due to deadlocks).
The locked wrapper around e records the successful taking of the
lock and is used to release the lock once e has been fully reduced
(DYN-EVAL-LOCK-RELEASE). Note that a thread that cannot take a lock
gets stuck until the lock is released. We define these states formally
to distinguish them from unsound stuck states (cf. § A.1)

Dereferencing null, e.g., using a null valued argument when
looking up a field or calling a method, results in a NullPointerEx-
ception, which crashes the program. These rules are unsurprising
and are therefore relegated to the appendix (cf. § A.2).

4.3 Concurrency (Figure 9)

OOlong models concurrency as non-deterministic choice between
what thread to evaluate (DYN-EVAL-ASYNC-LEFT/RIGHT). Finish/async
spawns one new thread for the second async and uses the current
thread for the first. This means that the first async holds all the
locks of the spawning thread, while the second async starts out
with an empty lock set (pYN-EvaL-sPawN). The evaluation context
rule, needed because DYN-EvAL-cONTEXT does not handle spawning,
forces the full reduction of the parallel expressions to the left of >
before continuing with e3, which is the expression placed in the
hole of the evaluation context (DYN-EVAL-SPAWN-CONTEXT). When

E. Castegren & T. Wrigstad

two asyncs have finished, the second thread is removed along with
all its locks®, and the first thread continues with the expression to
the right of I> (DYN-EVAL-ASYNC-JOIN).

5 TYPE SOUNDNESS OF OOLONG

We prove type soundness as usual by proving progress and preserva-
tion. This section only states the theorems and sketches the proofs.
We refer to the mechanised semantics for the full proofs (cf: § 6).
Since well-formed programs are allowed to deadlock, we must
formulate the progress theorem so that this is handeled. The Blocked
predicate on configurations is defined in the appendix (cf. § A.1).

PRrOGREss. A well-formed configuration is either done, has thrown
an exception, has deadlocked, or can take one additional step:

VI,H V,T,t.Tr{H;V;T): t =
T =(L,v)VT = EXNV Blocked({H;V;T)) Vv
Acefg’, (H; V; Ty — cfg’

ProOF sKETCH. Proved by induction over the thread structure
T. The single threaded case is proved by induction over the typing
relation over the current expression. O

To show preservation of well-formedness we first define a sub-
sumption relation It C I; between environments. I' subsumes I}
if all mappings y : ¢ in I} are also in Ip:

(Environment Subsumption)
WF-SUBSUMPTION
Vy:tel.T'(y) =t
rcr’

PRESERVATION. If (H;V;T) types tot under some environment T,
and (H; V;T) steps to some (H'; V’;T'), there exists an environment
subsuming I’ which types (H';V’;T’) to t.

VI, H, H,V, V', T, T/, t.
TH(H; VT : t AH;V;T) > (H;V;T') =
AT r(H;VTY :t AT C T

ProoF SkETCH. Proved by induction over the thread structure
T. The single threaded case is proved by induction over the typing
relation over the current expression. There are also a number of
lemmas regarding locking that needs proving (e.g., that a thread
can never steal a lock held by another thread). We refer to the
mechanised proofs for details. O

6 MECHANISED SEMANTICS

We have fully mechanised the semantics of OOlong in Coq, includ-
ing the proofs of soundness. The source code weighs in at ~4700
lines of Coq, ~1100 of which are definitions and ~3600 of which are
properties and proofs. In the proof code, ~300 lines are extra lem-
mas about lists and ~200 lines are tactics specific to this formalism
used for automating often re-occurring reasoning steps. The proofs
also make use of the LibTactics library [17], as well as the crush
tactic [7]. We use Coq bullets together with Aaron Bohannon’s
“Case” tactic to structure the proofs and make refactoring simpler;
when a definition changes and a proof needs to be rewritten, it is
immediately clear which cases need to be updated.

3In practice, since locking is structured these locks will already have been released.

OOlong: An Extensible Concurrent Object Calculus

The mechanised semantics are the same as the semantics pre-
sented here, modulo uninteresting representation differences such
as modelling the typing environment T' as a function rather than a
sequence. It explicitly deals with details such as how to generate
fresh names and separating static and dynamic constructs (e.g.,
when calling a method, the body of the method will not contain any
dynamic expressions, such as locked,{e}). It also defines helper
functions like field and method lookup.

The Coq sources are available in a public repository so that the
semantics can be easily obtained and extended [5]. The source files
compile under Coq 8.6.1, the latest version at the time of writing.

7 TYPESETTING OOLONG

The paper version of OOlong is written in Ott [20], which lets a
user define the grammar and type rules of their semantics using
ASCII-syntax. The rules are checked against the grammar to make
sure that the syntax is consistent. Ott can then generate KTEX code
for these rules, which when typeset appear as in this paper. The
Ott sources are available in the same repo as the Coq sources [5].

It is also possible to have Ott generate KIEX code for the gram-
mar, but these tend to require more whitespace than one typically
has to spare in an article. We therefore include KTEX code for a
more compact version of the grammar, as well as the definitions
of progress and preservation [5]. Ott also supports generating Coq
and Isabelle/HOL code from the same definitions that generate
LKTiEX code. We have not used this feature as we think it is useful to
let the paper version of the semantics abstract away some of the
details that a mechanised version requires.

8 EXTENSIONS TO THE SEMANTICS

This section demonstrates the extensibility of OOlong by adding
assertions and region based locking to the semantics. Here we only
describe the additions necessary, but these features have also been
added to the mechanised version of the semantics with little added
complexity to the code. They are available as examples on how to
extend the semantics [5].

8.1 Supporting Assertions

Assertions are a common way to enforce pre- and postconditions
and to fail fast if some condition is not met. We add support for as-
sertions in OOlong by adding an expression assert(x == y), which
asserts that two variables are aliases (if we added richer support
for primitives we could let the argument of the assertion be an
arbitrary boolean expression). If an assertion fails, we throw an
AssertionException. The type rule for assertions states that the
two variables are of the same type. The type of an assertion is Unit.

‘WF-ASSERT

Ix)=t Ty=t
'+ assert (x == y) : Unit

In the dynamic semantics, we have two outcomes of evaluating an
assertion: if successful, the program continues; if not, the program
should crash.
DYN-EVAL-ASSERT
V(x)= V(y)
(H; V; (L, assert(x == y))) — (H;V;(L, null))

SAC 2018, April 9-13, 2018, Pau, France

DYN-EXN-ASSERT

V(x) # V(y)
(H; V;(L,assert (x == y))) — (H;V;AssertionException)

Note that the rules for exceptions already handle exception propa-
gation, regardless of the kind of exception (cf. § A.2).

In the mechanised semantics, the automated tactics are powerful
enough to automatically solve the additional cases for almost all
lemmas. The additional cases in the main theorems are easily dis-
patched. This extension adds a mere ~50 lines to the mechanisation.

8.2 Supporting Region-based Locking

Having a single lock per object prevents threads from concurrently
updating disjoint parts of an object, even though this is benign from
a data-race perspective. Many effect-systems divide the fields of an
object into regions in order to reason about effect disjointness on a
single object (e.g., [4]). Similarly, we can add regions to OOlong, let
each field belong to a region and let each region have a lock of its
own. Syntactically, we add a region annotation to field declarations
(“f : t in r”) and require that taking a lock specifies which region
is being locked (“lock(x, r) in e”). Here we omit declaring regions
and simply consider all region names valid. This means that the
rules for checking well-formedness of fields do not need updating
(other than the syntax).

Dynamically, locks are now identified not only by the location :
of their owning object, but also by their region r. Objects need to be
extended from having one lock to having multiple locks, each with
its own lock status. We model this by replacing the lock status of
an object with a region map RL from region names to lock statuses.
As an example, the dynamic rule for grabbing a lock for a region is
updated thusly:

DYN-EVAL-LOCK-REGION
Vix)=1 H(t) = (C,F,RL) RL(r) = unlocked (Lr) ¢ L
H’ = H[1 +— (C,F,RL[r — locked])] L = Lu{lr)

(H; V;(L,lock(x,r)ine)) — (H';V; (L',locked(l’,){e}))

Similarly, the well-formedness rules for locking need to be updated

to refer to region maps of objects instead of just objects. A region

map must contain a mapping for each region used in the object:
WEF-REGIONS

Vf:tinre fields(C).r € dom(RL)
CrRL

The changes can mostly be summarised as adding one extra level
of indirection each time a lock status is looked up on the heap. This
extension increases the mechanised semantics by ~130 lines.

9 CONCLUSION

We have presented OOlong, an object calculus with concurrency
and locks, with a focus on extensibility. OOlong aims to model
the most important details of concurrent object-oriented program-
ming, but also lends itself to extension and modification to cover
other topics. A good language calculus should be both reliable and
reusable. By providing a mechanised formalisation of the semantics,
we reduce the leap of faith needed to trust the calculus, and also
give a solid starting point for anyone wanting to extend the calculus
in a rigorous way. Using Ott makes it easy to extend the calculus

SAC 2018, April 9-13, 2018, Pau, France

on paper and get usable KTgX figures without having to spend time
on manual typesetting.

We have found OOlong to be a useful and extensible calculus,
and by making our work available to others we hope that we will
help save time for researchers looking to explore concurrent object-
oriented languages in the future.

Acknowledgments We thank the anonymous reviewers for help-
ful feedback and suggestions.

REFERENCES

[1] Nada Amin, Samuel Griitter, Martin Odersky, Tiark Rompf, and Sandro Stucki.
2016. The Essence of Dependent Object Types. In A List of Successes That Can
Change the World. Springer.

[2] Anindya Banerjee and David A Naumann. 2002. Secure Information Flow and
Pointer Confinement in a Java-like Language.. In CSFW, Vol. 2. 253.

[3] Gavin M Bierman, MJ Parkinson, and AM Pitts. 2003. MJ: An imperative core
calculus for Java and Java with effects. Technical Report. University of Cambridge,
Computer Laboratory.

[4] Robert Bocchino. 2010. An Effect System And Language For Deterministic-By-
Default Parallel Programming. (2010). PhD thesis, University of Illinois at
Urbana-Champaign.

[5] E. Castegren. 2017. Coq and Ott sources for OOlong. https://github.com/EliasC/
oolong. (2017). GitHub repository.

[6] E. Castegren and T. Wrigstad. 2016. Reference Capabilities for Concurrency
Control. In ECOOP. https://doi.org/10.4230/LIPIcs. ECOOP.2016.5

[7] A. Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. The MIT Press.

[8] David G Clarke, John M Potter, and James Noble. 1998. Ownership types for
flexible alias protection. In ACM SIGPLAN Notices, Vol. 33. ACM, 48-64.

[9] Benjamin Delaware, William R Cook, and Don Batory. 2009. Fitting the pieces

together: a machine-checked model of safe composition. In ESEC-FSE. ACM.

Cormac Flanagan and Stephen N Freund. 2000. Type-based race detection for

Java. In ACM SIGPLAN Notices, Vol. 35. ACM, 219-232.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. 1998. Classes and

mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages. ACM, 171-183.

Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. 2001. Featherweight

Java: a minimal core calculus for Java and GJ. TOPLAS 23, 3 (2001).

Gerwin Klein and Tobias Nipkow. 2006. A machine-checked model for a Java-like

language, virtual machine, and compiler. TOPLAS 28, 4 (2006).

[14] Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and Nicholas
Cameron. 2012. Encoding Featherweight Java with assignment and immutability
using the Coq proof assistant. In FTfJP.

[15] Johan Ostlund and Tobias Wrigstad. 2010. Welterweight Java. In TOOLS. Springer.

[16] Arthur Michener Peters, David Kitchin, John A. Thywissen, and William R. Cook.
2016. OrcO: a concurrency-first approach to objects. In OOPSLA.

[17] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjéberg, and Brent Yorgey.
2017. Software Foundations. Electronic textbook. Version 5.0.

[18] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. 2011. Ener]: Approximate data types for safe and

general low-power computation. In ACM SIGPLAN Notices, Vol. 46. ACM.

Nathanael Schérli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.

2003. Traits: Composable Units of Behaviour. In ECOOP 2003, Luca Cardelli (Ed.).

Lecture Notes in Computer Science, Vol. 2743. Springer Berlin Heidelberg.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas

Ridge, Susmit Sarkar, and Rok Strnisa. 2007. Ott: Effective Tool Support for the

Working Semanticist. In ICFP.

[21] R. Striiisa. 2010. Formalising, improving, and reusing the Java Module System.

Ph.D. Dissertation. St. John’s College, United Kingdom.

Marko van Dooren and Wouter Joosen. 2009. A modular type system for first-class

composition inheritance. (2009).

[10

[11

[12

(13

[19

[20

[22

A OMITTED RULES

This appendix lists the rules for deadlocked states, exception prop-
agation, and the helper functions used in the main article. They
should all be unsurprising but are included for completeness.

E. Castegren & T. Wrigstad

A.1 Blocking

The blocking property of a configuration holds if all its threads
are either blocking on a lock or are done (i.e., have reduced to a
value). This property is necessary to distinguish deadlocks from
stuck states.

(Configuration is blocked)

BLOCKED-LOCKED BLOCKED-DEADLOCK
V(x)=1 H(1) = (C, F, locked) Blocked((H; V; T))
1 ¢ L Blocked({H; V; Tz))

Blocked((H; V; (£, lock(x) in ¢))) Blocked((H; V; Ty || Tz > €))

BLOCKED-LEFT
Blocked({H; V; T{))

Blocked((H; V; Ty [[(L, v) > €))

BLOCKED-RIGHT
Blocked((H; V; Tz))

Blocked((H; V; (£, v) || T > €))

BLOCKED-CONTEXT
Blocked({(H; V;(L, €)))

Blocked({H; V;(L, Ele])))

A.2 Exceptions

Exceptions terminate the entire program and cannot be caught. The
only rule that warrants clarification is the rule for exceptions in
evaluation contexts which abstracts the nature of an underlying
exception to avoid rule duplication (DYN-EXCEPTION-CONTEXT). For
readability we abbreviate NullPointerException as NPE. When
we don’t care about the kind of exception we write EXN.

ofg1 < cfgy

DYN-NPE-SELECT
V(x) = null

(H;V;(L, x.f)) < (H;V;NPE)

(Exceptions)

DYN-NPE-UPDATE
V(x) = null

(H;V;(L, x.f =v)) < (H;V;NPE)

DYN-NPE-CALL
V(x) = null

(H; V;(L, x.m(v))) < (H;V;NPE)

DYN-NPE-LOCK
V(x) = null

(H; V;(L, lock(x)ine)) < (H;V;NPE)

DYN-EXCEPTION-ASYNC-LEFT DYN-EXCEPTION-ASYNC-RIGHT

(H; V;EXN || T, > e) < (H; V;EXN) (H;V;T; ||EXN > e) < (H;V;EXN)

DYN-EXCEPTION-CONTEXT

(H;V;(L,e)) — (H'; V;;EXN)
(H; V;(L,E[e])) — (H'; V';EXN)

A.3 Helper Functions

This section presents the helper functions used in the formalism.
Helpers methods and fields are analogous to msigs, and we refer
to the mechanised semantics for details [5].

vardom(T) = {x | x € dom(T')}

. Msigs if interface I{ Msigs} € P
msigs(l) = { msigs(l;) Umsigs(l;) if interface I extends I, I, € P
msigs(C) = {Msig | def Msig{e} € Mds}ifclassC...{_Mds} e P
msigs(¢)(m) = x: t; — tp if m(x:ty): ¢y € msigs(?)

L ifT=(L, e)

heldLocks(T) = { heldLocks(T;) U heldLocks(Ty) if T =T || T, > e

locks(e) = {1 | locked,{e’} € e}

distinctLocks(e) = |locks(e)| = |lockList(e)|
where lockList(e) = [1 | locked,{e’} € e]

https://github.com/EliasC/oolong
https://github.com/EliasC/oolong
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5

	Abstract
	1 Introduction
	2 Related Work
	2.1 Java-based Calculi
	2.2 Background

	3 Static Semantics of OOlong
	3.1 Well-Formed Program (Figure3)
	3.2 Types and Subtyping (Figure4)
	3.3 Expression Typing (Figure5)

	4 Dynamic Semantics of OOlong
	4.1 Well-Formedness Rules (Figure7)
	4.2 Evaluation of Expressions (Figure8)
	4.3 Concurrency (Figure9)

	5 Type Soundness of OOlong
	6 Mechanised Semantics
	7 Typesetting OOlong
	8 Extensions to the Semantics
	8.1 Supporting Assertions
	8.2 Supporting Region-based Locking

	9 Conclusion
	References
	A Omitted rules
	A.1 Blocking
	A.2 Exceptions
	A.3 Helper Functions

