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Abstract
Functional programming languages are well-suited for de-
veloping compilers, and compilers for functional languages
are often themselves written in a functional language. Func-
tional abstractions, such as monads, allow abstracting away
some of the repetitive structure of a compiler, removing
boilerplate code and making extensions simpler. Even so,
functional languages are rarely used to implement compilers
for languages of other paradigms.
This paper reports on the experience of a four-year long

project where we developed a compiler for a concurrent,
object-oriented language using the functional languageHaskell.
The focus of the paper is the implementation of the type
checker, but the design works well in static analysis tools,
such as tracking uniqueness of variables to ensure data-race
freedom. The paper starts from a simple type checker to
which we add more complex features, such as type state,
with minimal changes to the overall initial design.

CCS Concepts • Software and its engineering→ Func-
tional languages; Compilers; Object oriented languages; •
Theory of computation → Type theory.

Keywords functional programming, object-oriented lan-
guages, type systems, compilers
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1 Introduction
Compilers for functional languages are often written in
functional languages themselves. For example, the Haskell,
OCaml, and F# compilers are written in their own respec-
tive language [1, 2, 5]. The recursive nature of functional
programming, as well as constructs such as algebraic data
types and pattern matching, lends itself well to traverse and
manipulate abstract syntax trees, which is a large part of the
task of a compiler. Functional programming languages pro-
vide abstractions, such as type classes or ML style modules,
which allows writing concise and extensible code.

However, programmers are creatures of habit. Therefore,
compilers for imperative or object-oriented languages tend
to be written in languages of these paradigms, e.g., the Java
compiler and the Scala compiler are written in their respec-
tive languages, and the clang compiler framework for C and
C++ is written in C++ [3, 4, 6]. This habit prevents compiler
writers from using attractive features from other languages.
For example, a programmer developing a language tool in C
will miss out on features like pattern matching and useful
type system features that are not available in C.1
In this paper, we report on our experience using Haskell

to develop the compiler for the object-oriented language
Encore [10]. The full compiler consists of ≈15,000 lines of
Haskell which compiles Encore to C. To make the presenta-
tion fit in a paper, we use a subset of the language and focus
on the implementation of the type checker (≈7,000 lines in
the full compiler). We start from a simple type checker and
gradually refactor and extend it to make it more robust and
feature rich. The monadic structure of the code allows these
extensions with few or no changes to the original code.
The language started as a research project, but has since

evolved to a full language with support for parametric poly-
morphism, subtyping via traits [31], concurrency, and a type
system that prevents data-races between threads sharing
state [12]. This paper reports on our experience creating a
compiler for a research language, focusing on the features
and robustness of the type checker. The techniques used are
not novel on their own, but we have not seen them used in
this combination for an object-oriented language.
1The same argument could be made in the other direction, since functional
languages for example typically do not offer control over low-level details
like memory layout.

https://doi.org/10.1145/3357766.3359545
https://doi.org/10.1145/3357766.3359545
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Audience Our hope is that this paper can serve as a source
of inspiration for language engineering researchers and com-
piler writers who want to use functional languages to de-
velop compilers and tools for object-oriented languages. We
expect the audience to be familiar with basic Haskell nota-
tion, the standard monads, and basic extensions.

Contributions

• An explanation of the initial design and implementa-
tion of a type checker for an object-oriented language,
using common functional programming constructs
(Sections 2–3).
• Descriptions of how to extend the type checker to
handle backtraces, reporting warnings, and throwing
multiple errors (Sections 4–6).
• A description of the use of phantom types to do type-
level programming, which ensures that the type checker
indeed type checks the entire program (Section 7).
• Explanation on how to add parametric polymorphism,
subtyping via traits, and tracking of uniqueness of
variables with no changes to the monadic design (Sec-
tions 8 – 10).

The main point of the work presented here is the ease of
extension from the original type checker with new compiler
functionality, and how easily one can add object-oriented
features, such as subtyping via traits.

2 A Small Object-Oriented Language and
its Typechecker

We define our object-oriented language below, and the en-
coding of the abstract syntax tree (AST ) using algebraic data
types in Figure 1.

Classes L ::= class C{Q f : τ ; M}
Qualifiers Q ::= var | val

Methods M ::= defm(x : τ ) : τ { return e }
Binary operators B ::= + | − | ∗ | /

Expressions e ::= x | let x = e in e | e .m(e) | e . f

| e B e | e(e) | e = e | new C(e)

| if e then e else e | e : τ | v
v ::= true | false | n | λ(x : τ ).e | null

Types τ ::= C | τ → τ | int | bool | unit

A program consists of a list of class definitions. A class
definition contains a list of field and method definitions. A
field definition has a name, a type, and a mutability modifier
(val or var). A method definition has a name, a list of param-
eters, a return type, and a method body. Traits and subtyping
are added in Section 9. Types are class names, function types
or primitive types int, bool or unit.

Expressions are mostly standard for an object-oriented
language. For simplicity we use a let expression for intro-
ducing names and handling scopes (in the Encore compiler,
an earlier phase translates an imperative style of variable
declarations into let form). Sequencing of statements can
be emulated by binding the result of the statement to an
unused variable: “s1; s2” =⇒ “let _ = s1 in s2”; or by
using a “sequence expression” containing a list of expres-
sions, only the last of which is used for its value (this is
the approach taken in the Encore compiler). An anonymous
function λ(x : τ ).e (Lambda in Figure 1) takes zero or more
parameters. Note the difference between method calls, which
call a method on a specified target, and function calls, which
call a value of function type.

The task of the type checker is twofold: to ensure that the
AST is well-formed, and to decorate each expression node
with its type. Every expression in the AST data type has a
field etype, which has value Nothing after parsing and which
will be assigned a type during the type checking phase (this
part of the designwill be improved in Section 7). Additionally,
the type checker uses an environment, storing a map of all
the classes of a program and all variables currently in scope.
Since we only allow assigning to immutable val fields if
we are currently in a constructor method, we also store a
boolean flag to track this.

data Env = Env {ctable :: Map Name ClassDef

,vartable :: Map Name Type

,constructor :: Bool}

We define a type class [37] Typecheckable with a single
function typecheckwhich takes such an environment and an
AST node, and returns either the decorated node, or an error
value (TCError) representing one of the ways type checking
can fail. To avoid having to check if each computation fails
or not, we use the exception monad [35]:

data TCError = TypeMismatchError Type Type

| UnknownClassError Name

| NonArrowTypeError Type

| NonClassTypeError Type

| NonArrowTypeError Type

| UninferrableError Expr

| ..

class Typecheckable a where

typecheck :: Env → a → Except TCError a

Figure 2 shows instances of Typecheckable for programs,
classes, fields, types and expressions (for brevity, we show an
excerpt). Type checking a program corresponds to checking
its classes; type checking a class corresponds to extending the
environment to include the variable this (Line 7), and check-
ing its fields and methods (Lines 8–9); type checking a type
corresponds to checking that named classes exist (Lines 17–
27). Lines 30–54 type check a function call and an assignment.
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type Name = String

newtype Program = Program [ClassDef]

data ClassDef = ClassDef {cname :: Name, fields :: [FieldDef]

,methods :: [MethodDef]}

data FieldDef = FieldDef {fname :: Name, ftype :: Type

,fmod :: Mod}

data MethodDef = MethodDef {mname :: Name, mparams :: [Param]

,mtype :: Type, mbody :: Expr}

data Type = ClassType Name | IntType | BoolType

| Arrow {tparams :: [Type], tresult :: Type}

| UnitType deriving (Eq)

data Expr = BoolLit {etype :: Maybe Type, bval :: Bool}

| IntLit {etype :: Maybe Type, ival :: Int}

| Lambda {etype :: Maybe Type, params :: [Param], body :: Expr}

| VarAccess {etype :: Maybe Type, name :: Name}

| FieldAccess {etype :: Maybe Type,

target :: Expr, name :: Name}

| Assignment {etype :: Maybe Type, lhs :: Expr, rhs :: Expr}

| MethodCall {etype :: Maybe Type, target :: Expr,

name :: Name, args :: [Expr]}

| FunctionCall {etype :: Maybe Type,

target :: Expr, args :: [Expr]}

| Let {etype :: Maybe Type, name :: Name,

val :: Expr, body :: Expr}

| ...

Figure 1. Encoding of AST nodes using algebraic data types

1 instance Typecheckable Program where

2 typecheck env (Program cls) =

3 Program <$> mapM (typecheck env) cls

4
5 instance Typecheckable ClassDef where

6 typecheck env cdef@ClassDef{cname, fields, methods} = do

7 let env' = addVariable env "this" (ClassType cname)

8 fields' ← mapM (typecheck env') fields

9 methods' ← mapM (typecheck env') methods

10 return cdef{fields = fields', methods = methods'}

11
12 instance Typecheckable FieldDef where

13 typecheck env fdef@FieldDef{ftype} = do

14 ftype' ← typecheck env ftype

15 return fdef{ftype = ftype'}

16
17 instance Typecheckable Type where

18 typecheck env (ClassType c) = do

19 _ ← lookupClass env c

20 return $ ClassType c

21 typecheck _ IntType = return IntType

22 typecheck _ UnitType = return UnitType

23 typecheck _ BoolType = return BoolType

24 typecheck env (Arrow ts t) = do

25 ts' ← mapM (typecheck env) ts

26 t' ← typecheck env t

27 return $ Arrow ts' t

28 instance Typecheckable Expr where

29 ...

30 typecheck env e@(FunctionCall {target, args}) = do

31 target' ← typecheck env target

32 let targetType = getType target'

33 unless (isArrowType targetType) $

34 throwError $ NonArrowTypeError targetType

35 let paramTypes = tparams targetType

36 resultType = tresult targetType

37 args' ← zipWithM hasType args paramTypes

38 return $ setType resultType e{target = target', args = args'}

39
40 typecheck env e@(Assignment {lhs, rhs}) = do

41 unless (isLVal lhs) $

42 throwError $ NonLValError lhs

43 lhs' ← typecheck env lhs

44 let lType = getType lhs'

45 rhs' ← hasType env rhs lType

46 checkMutability lhs'

47 return $ setType UnitType e{lhs = lhs', rhs = rhs'}

48 where

49 checkMutability e@FieldAccess{target, name} = do

50 field ← lookupField env (getType target) name

51 unless (isVarField field ||

52 constructor env && isThisAccess target) $

53 throwError $ ImmutableFieldError e

54 checkMutability _ = return ()

Figure 2. Type checking functions for programs, classes, fields, types and expressions (excerpt)

Note the helper function checkMutability which ensures
that immutable val fields are only assigned through this in
a constructor. The function hasType (e.g., Lines 37 and 45) is
used whenever a certain type is expected (cf. bidirectional
typechecking [27]). To throw an error, we use the function
throwError from the exception monad library.

For the Haskell novice, it is worth pointing out some of the
constructs and functions used here (and later in the paper).
Almost all functions pattern matching on some algebraic
data type uses the NamedFieldPuns extension, which binds

record fields of a parameter to variables of the same name
(e.g., Lines 6 and 13). The ($) operator simply applies the
function on its left to the value on its right (e.g., Lines 33,
34 and 38), which is mainly used for avoiding parentheses:
f (g x) == f $ g x. Similarly, the (<$>) operator applies a
function to the value inside a monad2 (e.g., Line 3), which
avoids having to extract the value, apply the function, and
put it back in the monad.

2Technically, the value only needs to be inside a functor, but this distinction
is not important here.
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The entry point to the type checker takes a program
and runs the monadic type checking computation (with
runExcept) under a built environment (genEnv p), and re-
turns either an error or the decorated program:

tcProgram :: Program → Either TCError Program

tcProgram p = runExcept $ typecheck (genEnv p) p

3 Refactoring: Removing Boilerplate
The type checking function, typecheck :: Env → a →

Except TCError a, expects an environment, passed to each
type checked node. This environment can be updated in the
current scope, but the changes are forgotten as we exit the
current scope – the type checker does not return an updated
environment. For example, when type checking a class decla-
ration, the variable this (line 2) is added to the environment
before type checking the fields and methods of the class dec-
laration, as shown below (lines 3–4). When the fields and
methods have been type checked, the variable this is no
longer accessible in the environment:

1 typecheck env cdef@ClassDef{cname, fields, methods} = do

2 let env' = addVariable env thisName (ClassType cname)

3 fields' ← mapM (typecheck env') fields

4 methods' ← mapM (typecheck env') methods

5 return cdef{fields = fields', methods = methods'}

A better design considers the environment as a global
entity, and allows running computations under a modified
environment when required. This is the precise definition
of the Reader monad [21]! We update the typecheck func-
tion to work with the Reader monad. In functional program-
ming languages, monad transformers compose monadic be-
haviours [22], so that we can stack the Reader monad onto
the Except monad. We use an alias to define a new type for
the return type of the type checking function, using common
type classes for monads:

type TypecheckM a =

forall m. (MonadReader Env m, MonadError TCError m) ⇒ m a

class Typecheckable a where

typecheck :: a → TypecheckM a

Now, instances of the Typecheckable class do not pass
the environment around explicitly – instead it is available
from the Reader monad. With the use of the standard func-
tion local :: MonadReader r m ⇒ (r → r)→ m a → m a,
the compiler runs a computation in a modified environment.
For example, type checking fields and methods of a class
run under a modified environment – the helper function
addVariable injects the variable this to the environment.

instance Typecheckable ClassDef where

typecheck cdef@ClassDef{cname, fields, methods} = do

let thisAdded = local $ addVariable thisName (ClassType cname)

fields' ← thisAdded $ mapM typecheck fields

methods' ← thisAdded $ mapM typecheck methods

return cdef{fields = fields', methods = methods'}

To run the type checker, we update the function tcProgram

to run the reader monad transformer, which returns the
exception monad. As before, we run the exception monad
with the function runExcept, returning either a type checking
error or the program with typing information.

tcProgram :: Program → Either TCError Program

tcProgram p = runExcept (runReaderT (typecheck p) (genEnv p)))

4 Extension: Support for Backtraces
The current type checker returns the first error that occurs,
but does not point out where this error occurred (e.g., in
which method, in which class). In this section, we add sup-
port for backtraces, i.e., tracking the positional context of
the type checker. The backtrace of a program is a list of back-
trace nodes. Each backtrace node has specific information
about the AST node that it represents.

newtype Backtrace = Backtrace [BacktraceNode]

data BacktraceNode = BTClass ClassDef

| BTMethod MethodDef

| BTField FieldDef

| BTParam Param

| BTExpr Expr

| BTType Type

Type checking errors should have access to their backtrace,
so that the compiler displays the backtrace aswell as the error.
We update the error data constructor, and create a separation
of concerns between the error and its available backtrace:

data TCError = TCError Error Backtrace

data Error = UnknownClassError Name

| TypeMismatchError Type Type

| ImmutableFieldError Expr

| ...

The backtrace is updated whenever the type checker visits
a new node, so that the position is tracked properly. The
backtrace and type checker are similar to a stack machine:
as soon as an AST node is type checked, the compiler creates
a backtrace node, and uses this information upon throwing
an exception. If there is no exception, the compiler pops the
node and gets back to the previous backtrace state. We place
the backtrace in the environment, so that it is available from
the Reader monad:
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data Env = Env {bt :: Backtrace

,ctable :: Map Name ClassDef

,vartable :: Map Name Type

,constructor :: Bool}

Even though here we are only using the backtrace to im-
prove error messages, it could also be used to query the
current context. For example, we could check whether we
are currently in a constructor method without tracking it
using the boolean flag constructor. This is how the Encore
compiler does it, but for simplicity in this presentation we
keep the boolean flag.

We can take advantage of the recursive nature of the type
checker and update the backtrace before checking each node.
To do this, we declare a type class Backtraceable, and create
instances for each AST node. Backtraceable has functions
backtrace and push: the former converts an AST node into a
BacktraceNode; the latter prepends an AST node to a back-
trace. We also create instances of the backtrace function for
each AST node:

class Backtraceable a where

backtrace :: a → BacktraceNode

push :: a → Backtrace → Backtrace

push x (Backtrace bt) = Backtrace (backtrace x : bt)

instance Backtraceable ClassDef where backtrace = BTClass

instance Backtraceable MethodDef where backtrace = BTMethod

...

To throw an error, we replace calls from throwError to
tcError, which retrieves the backtrace from the environment,
appends it to the type checking error, and throws the error.

tcError err = do

bt ← asks bt

throwError $ TCError err bt

We refactor the Typecheckable class with a new function,
doTypecheck, performing the actual type checking, and define
a default implementation of the typecheck function, which
converts and pushes the current node to the backtrace, before
type checking:

class Typecheckable a where

doTypecheck :: a → TypecheckM a

typecheck :: (Backtraceable a) ⇒ a → TypecheckM a

typecheck x = local pushBT $ doTypecheck x

where pushBT env@Env{bt} = env{bt = push x bt}

Finally, we change typecheck to doTypecheck in the left-
hand side of all function definitions. The bodies of the type
checking functions can remain as they are! The extension of
adding backtracing can be donewithout rewriting the original
implementation of the type checker.

5 Extension: Addition of Warnings
A compiler should inform the developer of patterns that may
trigger a bug, e.g., shadowing a variable. In this section, we
add compiler support for warnings: the type checker will
accumulate warnings and return them after type checking,
if there are no errors. A warning contains the information
needed to create an understandable message, as well as a
backtrace that identifies the position of the expression that
triggered it:

data TCWarning = TCWarning Warning Backtrace

data Warning = ShadowedVarWrn Name | UnusedVariableWrn Name | ...

At a first glance, one could think that a warning can be
modelled inside the exception monad. However, the excep-
tion monad aborts type checking upon finding an error,
whereas after finding a warning the type checker should
continue, accumulating as many warnings as possible. Thus,
warnings can be seen as a monotonically increasing list, for
which we will use the Writermonad [21]. To integrate warn-
ings into the type checking monad, we simply add a new
constraint to the monad:

type TypecheckM a = forall m. (MonadReader Env m,

MonadError TCError m, MonadWriter [TCWarning] m) ⇒ m a

This additional constraint requires us to update the entry
point of the type checker, since we also need to run the writer
monad.

tcProgram :: Program → Either TCError (Program, [TCWarning])

tcProgram p = runExcept $

runReaderT (runWriterT (doTypecheck p)) (genEnv p)

To emit a warning, we create a function that accesses the
environment, fetches the current backtrace, and appends it
to the warning:

tcWarning wrn = asks bt >>= \x → tell [TCWarning wrn x]

We use the standard function tell :: MonadWriter w m

⇒ w → m (), where MonadWriter requires the type variable
w to be a monoid. This is trivially satisfied by the use of a
list (of warnings). As an example, the following code raises
a warning if introducing a variable shadows an old one:

checkShadowing name = do

shadow ← isBound name

when shadow $

tcWarning $ ShadowedVarWarning name

Notice how we did not change the implementation of the
type checker, except when the type checker raises warnings.
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6 Extension: Support Multiple Errors
The type checker reports a single error at a time. However,
finding an error in one class should not prevent type check-
ing other classes.

To support multiple errors, we introduce a new combina-
tor which “forks” two computations in the Except monad,
and either returns both of their results, or aggregates the
errors of one or both of the computations. We abstract over
how the errors are aggregated by requiring that the error
data type is a Semigroup:

(<&>) :: (Semigroup e, MonadError e m) ⇒ m a → m b → m (a, b)

tc1 <&> tc2 = do

res1 ← (tc1 >>= return . Right) `catchError` (return . Left)

res2 ← (tc2 >>= return . Right) `catchError` (return . Left)

case (res1, res2) of

(Right v1, Right v2) → return (v1, v2)

(Left e1, Left e2) → throwError $ e1 <> e2

(Left e1, _) → throwError e1

(_, Left e2) → throwError e2

The forking combinator can also be used for mapping
over lists:

forkM :: (Semigroup e, MonadError e m) ⇒ (a → m b) → [a] → m [b]

forkM _ [] = return []

forkM f (x:xs) = uncurry (:) <$> (f x <&> forkM f xs)

We generalise our exception type to contain a list of errors.
A failing computation always contains at least one error, so
we use the NonEmpty list type and update the error throwing
function:

newtype TCErrors = TCErrors (NonEmpty TCError) deriving (Semigroup)

type TypecheckM a = forall m.

(MonadReader Env m, MonadError TCErrors m) ⇒ m a

tcError :: Error → TypecheckM a

tcError err = asks bt >>=

\x → throwError $ TCErrors (NE.fromList [TCError err x])

Now, we insert the forking combinators wherever wewant
to aggregate error messages. In general, calls to mapM can be
replaced by forkM. We update the implementation, and show
an example that aggregates errors from type checking fields
and methods of a class:

instance Typecheckable ClassDef where

doTypecheck cdef@ClassDef{cname, fields, methods} = do

(fields', methods') ←

local $ addVariable thisName (ClassType cname) $

forkM typecheck fields <&> forkM typecheck methods

return cdef{fields = fields', methods = methods'}

In contrast to previous extensions, here we actually need
to change small parts of the implementation, to aggregate
multiple errors. However, the changes are never more com-
plicated than replacing mapM by forkM and changing

r1 ← e1

e2 ← e2

into (r1, r2)← e1 <&> e2.

Multiple Errors Using ApplicativeDo An alternative ap-
proach to aggregating multiple errors is based on using ap-
plicative functors (the Applicative type class). Since the
composition of two computations in an applicative func-
tor cannot depend on each other, it is straightforward to
merge the errors if they both fail. In the spirit of the previous
sections however, we would like to avoid having to rewrite
the existing monadic compiler in an applicative style.
A way forward comes via the ApplicativeDo extension

for GHC [24]. This extension allows desugaring do notation,
which normally is only available for monads, to use the
operations of applicative functors whenever there are no
dependencies between computations. We start by redefining
the Except data type used in our type checker so that it is
an instance of Applicative, where composition of two error
values merges the errors:

data Except err a = Result a | Error err deriving(Show, Functor)

instance Semigroup err ⇒ Applicative (Except err) where

pure = Result

Result f <*> Result a = Result $ f a

Error e1 <*> Error e2 = Error $ e1 <> e2

Error e1 <*> _ = Error e1

_ <*> Error e2 = Error e2

instance Semigroup err ⇒ Monad (Except err) where

return = pure

Result a >>= f = f a

Error e >>= _ = Error e

(>>) = (*>)

By introducing the same definition of TCErrors as above
and enabling ApplicativeDo, we can get multiple error mes-
sages in places where there are no dependencies between
computations without changing the type checking code at
all!3 This technique seems to be known in the Haskell com-
munity, but we do not know where it was first introduced.

7 Refactoring: Type State Phases
One unattractive part of the current design (as well as the
current design of the Encore compiler) is the way each ex-
pression carries its type around as a value which might be
Nothing. Forgetting to annotate some subexpression with its
type in the type checking phase will cause later phases to
abort when the necessary information is not present. We
could get around this by using two different data types—one

3However, this breaks the expected invariant that <*> has the same be-
haviour as ap from the Monad type class, since the monad does not merge
error values.
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with type annotations and one without—but this would re-
quire us to duplicate the expression type and keep the two
versions in sync.

Really, what we would like is for our implementation to
be able to track which phase we are currently in, and only
allow querying an expression for its type if it has passed the
type checking phase. Similarly, an expression should only
be allowed to pass the type checking phase if it has indeed
been annotated with a type. Intuitively, we want the type
checking function to have the type “unannotated expression
→ annotated expression”, and the getType function to only
accept annotated expressions.
We propose type state [7, 20] as a solution to this prob-

lem, based on phantom types [18]. Instead of storing the
type of an expression as Maybe Type, we are going to param-
eterise the expression data type (and the other data types
that pass through the type checker) with a type representing
the current phase, which in turn carries the functor that the
expression wraps its type in:

data Expr (p :: Phase f) =

BoolLit {etype :: f (Type p), bval :: Bool}

| IntLit {etype :: f (Type p), ival :: Int}

| Lambda {etype :: f (Type p)

,params :: [Param p]

,body :: Expr p}

| MethodCall {etype :: f (Type p)

,target :: Expr p

,name :: Name

,args :: [Expr p]}

| ...

Note that p is a type parameter of kind Phase f. The type
parameter f is going to be the Proxy functor (from Data.

Proxy) for unannotated expressions, and the Identity func-
tor (from Data.Functor.Identity) for annotated expressions.
The former discards its wrapped value, while the latter stores
it as is:

data Proxy a = Proxy

newtype Identity a = Identity {runIdentity :: a}

To define the Phase kind, we lift a regular data type to
the kind level using the GHC extension DataKinds. Since
different phases carry different functors, we define it as a
GADT [25]:

data Phase (f :: * → *) where

Parsed :: Phase Proxy

Checked :: Phase Identity

With this change, we define the getType function as

getType :: Expr 'Checked → Type 'Checked

getType e = runIdentity (etype e)

meaning it cannot be called unless the expression has been
type checked. The type checking functions take an AST node

from phase Parsed to phase Checked. Note that we cannot use
the (more intuitive) type “a 'Parsed → a 'Checked”, since
the two occurrences of the type parameter a would have
different kinds. Instead we use two different parameters,
related by functional dependency:

class Typecheckable a b | a → b where

doTypecheck :: a 'Parsed → TypecheckM (b 'Checked)

typecheck :: (Backtraceable (a 'Parsed))

⇒ a 'Parsed → TypecheckM (b 'Checked)

typecheck x = local (pushBT x) $ doTypecheck x

An important change is that the environment used for
type checking must only contain well-formed types, which
requires us to check the interfaces of every class before check-
ing any expressions. Note that due to a chicken-and-egg
problem, the environment can no longer contain full class
definitions: in order to run the type checker we need a well-
formed environment, but in order to get an environment
containing well-formed classes we would need to run the
type checker! Instead we change the environment to use
special entries which only contain the (well-formed) types of
classes, methods and fields (Figure 3). When building the en-
vironment, we use a simpler kind of environment which we
dub a pre-environment which simply contains a list of all the
valid class names, allowing us to check the well-formedness
of types. We call the process of checking the types used by
classes, fields and methods pre-checking, and use a type class
scheme similar to the main type checker:

class Precheckable a b | a → b where

doPrecheck :: a → TypecheckM b

precheck :: (Backtraceable a) ⇒ a → TypecheckM b

precheck x = local (pushBT x) $ doPrecheck x

Note that we reuse our type checking monad from before,
including any of the previous extensions we might have
added. For each kind of AST node a, we define an instance
Precheckable a b which returns an entry of type b that can
be used by the environment being generated. For example,
pre-checking a class generates a ClassEntry, containing the
(well-formed) types of all fields and methods (Figure 3).

After pre-checking, we have a well-formed environment
(Line 5 below) that we can use to type check the program just
as before. With these changes, the entry point to the type
checker takes an undecorated program and returns either a
list of errors or the decorated program and a list of warnings.

1 tcProgram :: Program 'Parsed

2 → Either TCErrors (Program 'Checked, [TCWarning])

3 tcProgram p = do

4 let preEnv = generatePreEnv p

5 (env, _) ← runExcept $ runReaderT (runWriterT (genEnv p)) preEnv

6 runExcept runReaderT (runWriterT (doTypecheck p)) env
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data MethodEntry =

MethodEntry {meparams :: [Param 'Checked]

,metype :: Type 'Checked}

data FieldEntry =

FieldEntry {femod :: Mod

,fetype :: Type 'Checked}

data ClassEntry =

ClassEntry {cefields :: Map Name FieldEntry

,cemethods :: Map Name MethodEntry}

data Env =

PreEnv {classes :: [Name]}

| Env {ctable :: Map Name ClassEntry

,vartable :: Map Name (Type 'Checked)

,constructor :: Bool}

genEnv :: Program 'Parsed → TypecheckM Env

genEnv (Program classes) = do

clsEntries ← mapM precheck classes

let cnames = map cname classes

duplicates = cnames \\ nub cnames

unless (null duplicates) $

throwError $ DuplicateClassError (head duplicates)

return Env {vartable = Map.empty

,ctable = Map.fromList $ zip cnames clsEntries}

instance Precheckable (ClassDef 'Parsed) ClassEntry where

precheck ClassDef {fields, methods} = do

fields' ← mapM precheck fields

methods' ← mapM precheck methods

let (fields'', methods'') = (map fname fields, map mname methods)

return ClassEntry {cefields = Map.fromList $ zip fields'' fields'

,cemethods = Map.fromList $ zip methods'' methods'}

Figure 3. Construction of an environment from the parsed phase

This design decouples the type checking of interfaces from
type checking the rest of a program, e.g., type errors in field
or method definitions will not cause errors due to ill-formed
types when type checking field accesses or method calls.

By tracking the current phase in the type of an AST node,
we ensure that all AST nodes go through the typecheck func-
tion, and that it indeed returns checked AST nodes. Haskell
statically prevents compiler writers from using undecorated
AST nodes where one expects them to have typing informa-
tion. With the exception of the environment generation and
some type signatures, the original implementation of the type
checker did not change notably.

8 Feature: Parametric Polymorphism
Parametric polymorphism, or in the Java jargon, generics [9,
11], allows code to be parameterised over one or more ab-
stract type parameters, which can be instantiated with dif-
ferent concrete types at different use sites. The addition of
generics to the type checking monad adds an auxiliary field
to the environment, typeParameters, which keeps track of
the available type parameters (which may be used as types).

data Env = Env {ctable :: Map Name ClassDef

,vartable :: Map Name Type

,typeParameters :: [Type]

,bt :: Backtrace

,constructor :: Bool}

The (initially empty) list of type parameters is built with
the construction of the environment. Whenever polymor-
phic code introduces new type variables, one proceeds by
running the type checker under a modified environment
which contains these new type variables. For example, the
code below shows type checking for a polymorphic method.
The field mtparams contains a list of the formal type parame-
ters of a method. These are added to the environment when

checking the types of the method parameters4 and the return
type of the method, as well as when checking the body of
the method:

doTypecheck m@(Method {mname, mtparams, mparams, mtype, mbody}) = do

local (addTypeParameters mtparams) $ mapM_ typecheck mparams

local (addTypeParameters mtparams) $ typecheck mtype

eBody ← local (addTypeParameters mtparams .

setConstructor mname .

addParams mparams) $ hasType mbody mtype

In places where generic classes or methods are used, a
map from formal type parameters to type arguments can be
used to translate a polymorphic type to a concrete type. For
example, if the following generic class

class C[a]

val f : a

def init(f: a): unit

this.f = f

end

def get(): a

this.f

end

end

is instantiated as C[int], the type checker applies the sub-
stitution {a 7→ int} to all looked up field and method types
of the class Some care must be taken to make type vari-
ables unique, but this can be achieved with regular alpha
conversion [26].

It is straightforward to infer type arguments for construc-
tors of polymorphic classes, or polymorphic method and
function calls, as long as all the type parameters are used in
the arguments of the call. For example, given the class above,
the type of the expression new C(42) is inferred as C[int]. If

4 Notice the use of mapM_ instead of mapM, which ignores the result of the
operation.
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a type variable is not used in a call (cf. phantom types [18]),
explicit type arguments must be provided.

9 Feature: Subtyping
Subtyping is often considered one of the core features of
object-oriented programming. Subtype polymorphism al-
lows passing a value of type S to code that expects a value
of typeT , whenever S is a subtype ofT . In Encore, we imple-
ment subtyping via traits [31]. This choice does not affect
the overall design of the type checker much when compared
to other subtyping mechanisms, such as class inheritance or
interfaces.
Traits can be thought of as a special kind of Java style

interfaces, which can provide default implementations for
methods (like in Java 8), but which may also require the
presence of other methods or fields in the class including it.
Overlapping requirements of two included traits is allowed,
whereas overlapping method implementations need to be
overridden by the including class.
Figure 4 shows an example of traits in action. The trait

Showable (Line 1) requires the presence of a method show, and
is equivalent to a Java interface. The trait Countable (Line 5)
requires the presence of an integer field f, and provides a
method bump, which increments f by one. The two traits are
included by the class Cell (Line 12), which must provide
the required fields and methods, but which also gets any
methods provided by the traits; in this case the bump method.

1 trait Showable

2 require def show() : String

3 end

4
5 trait Countable

6 require var f : int

7 def bump() : unit

8 this.f += 1

9 end

10 end

11
12 class Cell : Showable + Countable

13 var f : int

14 def show() : String

15 int_to_string(this.f)

16 end

17 end

Figure 4. Example of traits

We extend the type checker to cater for traits, adding
a subtyping relation between classes and their included
traits. To distinguish between class types and trait types,
the type checker needs to keep track of the declared traits
of a program. We extend the environment with a new field
traittable.

data Env = Env {ctable :: Map Name ClassDef

,traittable :: Map Name TraitDecl,

,vartable :: Map Name Type

,typeParameters :: [Type]

,bt :: Backtrace

,constructor :: Bool}

When type checking a class that includes traits, the type
checker checks well-formedness (lines 2–3) and trait require-
ments (lines 4–6):

1 doTypecheck c@(Class {cname, cfields, cmethods, ctraits}) = do

2 local addTypeVars $ mapM_ typecheck ctraits

3 mapM_ isTraitType ctraits

4 mapM_ (meetRequiredFields cfields) ctraits

5 meetRequiredMethods cmethods ctraits

6 ensureNoMethodConflict cmethods ctraits

7 ...

Checking subtyping between a class typeC and a trait type
T is as simple as looking up the declaration of C and seeing
if it includes T . We capture this in a function subtypeOf, of
type Type → Type → TypecheckM Bool, that we use when-
ever we need to check subtyping (for example in the helper
function hasType).

10 Feature: Uniqueness Types
In addition to standard object-oriented features, like poly-
morphism and subtyping, Encore supports a capability-based
type system to prevent data-races [12]. Part of this system
involves reasoning about uniqueness (disallowing aliasing of
an object), similar to languages like Rust [30] or Pony [13].
To maintain uniqueness, the compiler performs an additional
pass over the program, called capture checking, to ensure that
unique variables are not duplicated.
The capture checker traverses the AST and marks each

node as either free or captured. A free node is a node whose
value is not being stored anywhere, whereas a captured node
is one whose value is bound to some reference. For example,
the expression new Foo() is considered free (it has no existing
references to it), whereas a variable x is considered captured
(its value is reachable throughx ).Whenever a value of unique
type is used in a way that would capture it (e.g., when it is
being bound to a variable), the capture checker ensures that
the value is free, so that capturing it would not introduce
overlapping references.
Just as before (but ignoring phantom typed phases for

clarity), we introduce a type class for capture checking:

1 class Capturecheckable a where

2 capturecheck :: Pushable a ⇒ a → TypecheckM a

3 capturecheck x = local (pushBT x) $ doCapturecheck x

4
5 doCapturecheck :: a → TypecheckM a
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The capture checking pass uses the same monad as the
type checker, enabling reuse of the features we have dis-
cussed in this paper. We can get error reporting with back-
traces, warnings, and so on, out of the box. To annotate the
AST , we extend each expression with a field captureStatus

of type Maybe CaptureStatus, where CaptureStatus is a data
type simply defined as either Free or Captured.
In order to be able to pass unique values around in vari-

ables, Encore uses destructive reads [8] of the form consume x,
which reads x and sets its value to null. While reading a vari-
able gives a captured value, reading a variable destructively
results in a free value. The following excerpt shows these
rules, and the rule for let expressions, which capture their
bound value, and is free if and only if the body of the let is
free:

instance Capturecheckable Expr where

doCapturecheck e@VarAccess{} =

return $ makeCaptured e

doCapturecheck e@Consume{} =

return $ makeFree e

doCapturecheck e@Let{val, body} =

do val' ← capturecheck val

let ty = getType val'

when (isUniqueType ty) $

unless (isFree val') $

tcError $ UniqueCaptureError val' ty

body' ← capturecheck body

let e' = e{val = val', body = body'}

if isFree body then

return $ makeFree e'

else

return $ makeCaptured e'

As this example shows, the infrastructure presented in
this paper can be reused for other kinds of static analysis of
an AST . Any future extensions made to the typechecking
monad would be useful for these analyses as well.

11 Related Work
In this section relate the Encore compiler to other compilers
of functional and object-oriented languages.

11.1 Comparison with Functional Languages
In this section we compare our design with the compilers
of three functional languages also written in Haskell: Pure-
Script, Elm, and Haskell.

PureScript PureScript is a strongly typed, functional pro-
gramming language that compiles to JavaScript [19]. Its syn-
tax resembles Haskell, it is strictly evaluated, and has an ad-
vanced type system with support for type classes, type infer-
ence, and extensions similar to Haskell’s, such as DataKinds
(cf. Section 7).5

PureScript has a bidirectional type checker [28], encoded
in a monadic design with the the Except, State, and Writer
monads.Warnings are accumulated in the Writermonad, and
are encoded using the error data type. Errors are accumulated
in the Except monad. This design decision means that one
cannot differentiate warnings from errors, unless there is a
monadic context. At the same time, it also allows an interplay
between the Writer and Except monad, where one can lift a
warning into an exception easily, given that they are of the
same data type.

PureScript’s exception handling design is similar to ours,
but differs in its implementation. To handle errors, PureScript
first throws exceptions and then catches them at specific
points to add more information, re-throwing the error to
propagate it to higher levels. Our design relies on the inter-
play between the Readermonad and the Exceptmonad. Upon
throwing an exception, we first get the backtrace informa-
tion from the environment, create the appropriate error, and
throw the exception. There is nothing preventing our design
to use the throw-catch-rethrow design used in PureScript. In
terms of throwing multiple errors, PureScript follows the
same design as ours (Section 6), except that it has been en-
coded differently.6
Overall, PureScript uses the techniques presented in this

paper with some design variations. We see this as an indica-
tion that our design could be used for compilers of functional
languages without having a negative impact on, e.g., type
inference.

Elm Elm is a strongly typed, functional, reactive program-
ming language for creating responsive, web-browser based
graphical interfaces, compiling to JavaScript [15].
Elm is known for its detailed compiler messages with

understandable backtraces. The type checker does not use a
monadic approach, nor even a common functional style – the
type checker uses mutable references to register and keep
track of variables. In many occasions, some of the boilerplate
code is manually dealt with. For instance, errors could be
easily accumulated using the Except monad, but Elm has a
more imperative design approach:

addError :: State → Error.Error → State

addError (State env rank errors) err = State env rank (err:errors)

5More information https://github.com/purescript/documentation/blob/
master/language/Differences-from-Haskell.md#extensions
6https://github.com/purescript/purescript/blob/
b7b47b236e9892675c2e7854630f1ae5e219479c/src/Language/PureScript/
Errors.hs#L1505

https://github.com/purescript/documentation/blob/master/language/Differences-from-Haskell.md#extensions
https://github.com/purescript/documentation/blob/master/language/Differences-from-Haskell.md#extensions
https://github.com/purescript/purescript/blob/b7b47b236e9892675c2e7854630f1ae5e219479c/src/Language/PureScript/Errors.hs#L1505
https://github.com/purescript/purescript/blob/b7b47b236e9892675c2e7854630f1ae5e219479c/src/Language/PureScript/Errors.hs#L1505
https://github.com/purescript/purescript/blob/b7b47b236e9892675c2e7854630f1ae5e219479c/src/Language/PureScript/Errors.hs#L1505
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The State type contains an environment and a list of
errors. The type checker does not throw monadic exceptions,
but accumulates errors under this environment. Warnings
are dealt with in a similar fashion to errors.
We believe that parts of the compiler could be improved

by the advanced functional features explained in this paper,
such as the Except monad. For example, the compilation
function (code below) uses helper functions (e.g., typeCheck)
to pattern match on the result, do nothing if it is Right, or
wrap the error into a new data type on the Left value. This
is a clear case for throwing exceptions.

compile pkg ifaces modul =

do canonical ← canonicalize pkg ifaces modul

annotations ← typeCheck modul canonical

() ← nitpick canonical

objects ← optimize modul annotations canonical

return (Artifacts canonical annotations objects)

typeCheck :: Module → Module → Either Error (Map Name Annotation)

typeCheck modul canonical =

case unsafePerformIO (Type.run =<< Type.constrain canonical) of

Right annotations → Right annotations

Left errs → Left(E.BadTypes (Localizer.fromModule modul) errs)

Haskell Haskell is a lazy, pure, functional language with
a state-of-the-art type system [23]. It has support for type
classes, type inference [34], and advanced extensions. Haskell
is the leading typed, functional programming language used
in industrial settings.

The Glasgow Haskell Compiler [2], which is the de-facto
standardHaskell compiler, uses a type checkingmonad TcM to
do type checking and renaming. The type checking monad
acts like the Reader monad with instances for the Except,
Fix and MonadPlus monads. (The monadic structure of the
type checking monad is also used in other phases). The TcM

monad maintains global and local environments, tracking
top-level information from modules and local information,
respectively. TcM uses mutable references to keep track of
changes that should be returned after type checking, for
example, errors and warnings. Warnings are encoded in
terms of errors, but use a type alias to differentiate warnings
from errors when required.
Type checking of expressions takes an AST node, and

an expected type, the type checker returns the new AST
node wrapped in the type checker monad, as per tcExpr ::

HsExpr GhcRn → ExpRhoType → TcM (HsExpr GhcTcId).
The main differences with our approach is that GHC’s

design uses the Reader monad and mutable references to
apply type changes on specific scopes and to accumulate
errors and warnings. This is in contrast to our usage of the
Reader monad in all type checking places and the Writer

monad to accumulate warnings. Our design, which is also
simpler, does not make use of the IO monad, given that we
use the Writer and State monads to accumulate errors and

warnings. Finally, themonadic structure of our type checking
monad can also be reused in other phases of the compiler.

11.2 Comparison with Object-Oriented Languages
In this section we compare our current design with the Scala
compiler.

Scala Compiler Scala is an object-oriented language with
an advanced type system, with support for functional pro-
gramming [6]. It provides subtyping via inheritance, traits,
and type classes.

Regarding the implementation of the compiler’s AST, Scala
implements a DSL to generate AST nodes. Their encoding
uses classes, traits, case classes, and implicit conversions;
to create flexible AST node transformations, their design
uses inheritance and subtyping. This design is much more
advanced than our simple encoding of ASTs.

Scala’s design to handle errors and warnings uses inheri-
tance and subtyping. This design decision favours the cre-
ation of new subclasses to provide different implementations,
such as a storing class that accumulates errors (similar to
the one in this article), to a side-effecting class that prints er-
rors. Our implementation is more principled due to Haskell’s
type system, where side-effects are captured at the type-
level. However, as is common in functional programming,
adding a new data value implies the explicit management of
this data value – this is the problem known as the Expres-
sion Problem [14, 29, 36] (to which several solutions exist,
e.g., [16, 17, 32, 33]).

12 Discussion and Lessons Learned
In this section we discuss the project on a higher level and
list some of the things we learned in the process.

Our Background When this project started, we were a
group of researchers familiar with functional programming
as a whole; we had not previously developed more than toy
programs in Haskell. Some of us were familiar with Haskell
as a general purpose language, but not so much with its ad-
vanced typing features and abstractions, such as generalised
algebraic data types, monads, or monad transformers.

We were not used to thinking in terms of algebraic struc-
tures, e.g., semigroups and monoids. We were also not famil-
iar with GHC extensions, such as functional dependencies
and others, which are invaluable for writing Haskell code.

The decision to use Haskell was more or less arbitrary, but
it turned out to be the right choice in terms of maintainability
and flexibility of the compiler.

What Didn’t Work So Well As with any new language,
there is a learning curve and it took some time for new people
joining the project to be familiar and productive with the
language. Debugging was not easy, and we still mainly rely
on prints from the trace function in module Debug.Trace.
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When we started this project, we could not find explana-
tions for how to create a compiler using Haskell’s features,
putting together advanced concepts in small steps, as we do
here. We were able to follow the functional literature, but
we had to put the pieces back together on our own.

The intuition to type state using phantom types and the
kinding system is rough to grasp at the beginning, and during
the implementation we felt we were guided by gut feeling,
rather than deep knowledge. For this reason, we believe that
an experience report like this can shed some light on how
to do simple type-level programming in the context of a
compiler, in Haskell.

The type state implementation was developed specifically
for the type checker of the language presented in this paper,
and has yet to be added to Encore. We do not think that this
involves substantially more work than the changes explained
in this paper.

What Can You Learn From This Experience? We hope
that this experience report can serve as a solid basis for
future researchers and practitioners interested in developing
static tools or compilers in Haskell.

We believe that this report shines light on how to write a
compiler (static analysis tool), leveraging high-level (type)
abstractions. The related work on functional languages con-
firms that this design is also applicable to compilers of func-
tional languages. We do not claim the originality of the tech-
niques, but we believe that this report can still be helpful in
spreading the gospel of the monadic design to developers of
object-oriented languages.

Brief Comparison to the Encore Compiler This paper
presents a subset of the full Encore language. In addition to
the features we have seen so far, Encore supports concur-
rency based on actors and tasks, together with a capability-
based type system for ensuring the absence of data-races [12].
There are also arrays, global and local functions, mutable
and immutable variables, algebraic data types and pattern
matching, and other features that naturally make the com-
piler more complicated. This means that the source code
of the Encore compiler is more complicated than the code
presented in this paper. Still, we argue that the overall design
is the same for both compilers.

As an example of the differences between our presentation
and the real thing, we include the type checking code for
assignments from the Encore compiler, and discuss some of
the differences from the code in Figure 2:
doTypecheck assign@(Assign {lhs = lhs@VarAccess{qname}, rhs}) =

do eLhs ← typecheck lhs

varIsMutable ← asks $ isMutableLocal qname

varIsLocal ← asks $ isLocal qname

unless varIsMutable $

if varIsLocal

then tcError $ ImmutableVariableError qname

else pushError eLhs NonAssignableLHSError

eRhs ← hasType rhs (AST.getType eLhs)

return $ setType unitType assign {lhs = eLhs, rhs = eRhs}

doTypecheck assign@(Assign {lhs, rhs}) =

do eLhs ← typecheck lhs

unless (isLval eLhs) $

pushError eLhs NonAssignableLHSError

context ← asks currentExecutionContext

case context of

MethodContext mtd →

unless (isConstructor mtd && isThisFieldAccess eLhs) $

assertNotValField eLhs

_ → assertNotValField eLhs

eRhs ← hasType rhs (AST.getType eLhs)

return $ setType unitType assign {lhs = eLhs, rhs = eRhs}

Since Encore has global variables in the form of global
functions, we separate type checking of assignment into two
cases. If we are assigning a variable, we ensure that it is a
mutable, local variable (and raise an informative error if it is
not). Note the use of pushError, which pushes an expression
onto the backtrace before throwing an error. This is used
to make an error message focus on a child of the current
expression.

The case where we are not assigning a variable is mostly
similar to the example in Figure 2. The main difference is that
we use the backtrace to get the current execution context (a
method, a function, or a closure) and check if we are currently
inside a constructor, rather than storing this information
directly as a flag in the environment as in Section 2.

13 Conclusion
A huge part of writing code is finding the right abstractions.
Haskell proved to be the right tool for us for writing a com-
piler for our concurrent, object-oriented language. As shown
in this report, we monotonically added compiler extensions
to a core type checker, without any substantial changes to
the original code.
In this report we also show how to add language-level

features, such as parametric polymorphism and subtyping.
We finished by showing that the monadic design can be
reused for new phases doing static analysis, and that these
phases immediately gets access to an environment, and the
warning and exception systems, for free.
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