
Trieste: A C++ DSL for Flexible Tree Rewriting
Sylvan Clebsch

Microsoft Azure Research
Austin, USA

sylvan.clebsch@microsoft.com

Matilda Blomqvist
Uppsala University
Uppsala, Sweden

matilda.blomqvist@it.uu.se

Elias Castegren
Uppsala University
Uppsala, Sweden

elias.castegren@it.uu.se

Matthew A. Johnson
Microsoft Azure Research

Cambridge, United Kingdom
matjoh@microsoft.com

Matthew J. Parkinson
Microsoft Azure Research

Cambridge, United Kingdom
mattpark@microsoft.com

Abstract
Compilation is all about tree rewriting. In functional lan-
guages where all data is tree-shaped, tree rewriting is facil-
itated by pattern matching, but data immutability leads to
copying for each update. In object-oriented languages like
Java or C++, a standard approach is to use the visitor pattern,
which increases modularization but also adds indirection
and introduces boilerplate code. In this paper, we introduce
Trieste – a novel tree-rewriting DSL, combining the power
of C++ with the expressivity of pattern matching.
In Trieste, sequences of rewrite passes can be used to

read a file to produce an abstract syntax tree (AST), convert
from one AST to another, or write an AST to disk. Each pass
rewrites an AST in place using subtree pattern matching,
where the result is dynamically checked for well-formedness.
Checking the well-formedness of trees dynamically enables
flexibly changing the tree structure without having to define
new data types for each intermediate representation. The
well-formedness specification can also be used for scoped
name binding and generating random well-formed trees for
fuzz testing in addition to checking the shape of trees.

Trieste has been used to build fully compliant parsers for
YAML and JSON, a transpiler from YAML to JSON, and a
compiler and interpreter for the policy language Rego.

CCS Concepts: • Software and its engineering → Do-
main specific languages; Parsers; Translator writing sys-
tems and compiler generators.

Keywords: Rewriting, Compilers, Domain-Specific Languages
ACM Reference Format:
Sylvan Clebsch, Matilda Blomqvist, Elias Castegren, Matthew A.
Johnson, and Matthew J. Parkinson. 2024. Trieste: A C++ DSL for

SLE ’24, October 20–21, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1180-0/24/10
https://doi.org/10.1145/3687997.3695647

Flexible Tree Rewriting. In Proceedings of the 17th ACM SIGPLAN
International Conference on Software Language Engineering (SLE
’24), October 20–21, 2024, Pasadena, CA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3687997.3695647

1 Introduction
A compiler translates one language (e.g. source code, interme-
diate language) to another (e.g. assembler, bytecode) mainly
by reading, rewriting, and writing trees. In functional lan-
guages, tree rewriting is facilitated by pattern matching but
data immutability means each rewrite requires a copy. In
object-oriented languages like Java and C++ rewrites can
be performed in-place, but a naive implementation spreads
functionality across classes. This is alleviated by techniques
like the visitor pattern or specialized tools like Clang’s AST
Matcher [15]. Other tools facilitate language development
by generating lexers [10, 12], parsers [8, 13] or even data
types for syntax trees [7, 11], given some specification. At the
end of the spectrum, language workbenches like Spoofax [9]
can generate full language implementations from declarative
specifications. Although it offers more specialized support, it
restricts development to the tools given by the workbench.
A tool like ANTLR [11] takes a grammar and generates

a full parser as well as other helpful tools like visitors and
listeners for further processing of the syntax tree. However,
as soon as you move away from the original syntax tree
(for example to some intermediate representation), you must
define new data types, including boilerplate methods for
traversal, listeners and visitors.

This paper presents our ongoingwork on Trieste, a DSL for
tree rewriting embedded in C++. It is designed to incorporate
useful features from these different approaches. The novelty
of Trieste is its flexibility: the expected structure of the tree
can be changed in every rewrite pass without having to
define new data types or visitors. The shape of a tree is
instead checked dynamically against a well-formedness (WF)
specification connected to each rewrite pass. Not having to
define new data types for every change to the tree encourages
writing applications with many small passes operating on
an evolving tree shape. The same specification also enables
the generation of random trees for fuzz testing.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

184

https://orcid.org/0009-0004-4049-134X
https://orcid.org/0009-0005-3795-2990
https://orcid.org/0000-0003-4918-6582
https://orcid.org/0000-0002-1019-8036
https://orcid.org/0009-0004-3937-1260
https://doi.org/10.1145/3687997.3695647
https://doi.org/10.1145/3687997.3695647
https://creativecommons.org/licenses/by/4.0/

SLE ’24, October 20–21, 2024, Pasadena, CA, USA Sylvan Clebsch, Matilda Blomqvist, Elias Castegren, Matthew A. Johnson, and Matthew J. Parkinson

Source code
Parse

Errors?
True

False

Well-formed?

ASTST

ASTST

True

Next pass?
False

True:
Run next pass

AST’

Error

Write to file, etc.

AST

False
WF-Error

Figure 1. Schematic overview of a Trieste program. The
resulting AST of a rewrite pass is checked for errors and
well-formedness before continuing.

In this paper, we give an overview of Trieste (Section 2)
and present two larger case studies (Sections 3 and 4) before
discussing insights and future work (Section 5). Trieste is
available as open source [17].

2 Trieste by Example
In this section, we introduce Trieste using (simplified) exam-
ples from a compiler frontend for MiniML [1]. The examples
are shown in context in Appendix A, and the full code can
be accessed online [4].
Figure 1 gives an overview of a general Trieste program.

An initial parsing pass translates one or more source files
into a first abstract syntax tree (AST) (Section 2.1). The tree
data type in Trieste has no prescribed shape and is the same
for all Trieste programs. Instead, each pass has an associated
WF specification that describes the expected tree structure
after applying that pass (Section 2.2). After a pass has run
successfully, the tree is checked to comply with its WF spec-
ification. The rest of the program is a sequence of rewrite
passes (Section 2.3). A rewrite pass contains a sequence of
rewrite rules that are run once or until fixpoint. A rewrite
rule uses pattern matching to select subtrees that should
be rewritten. Trieste also provides support for scoped name
binding by allowing nodes to hold symbol tables which can
be queried for bound names (Section 2.4).

2.1 Parsing
The parsing pass translates a source program into an initial
tree. Nodes in the tree have a token (the type of the node), a
value (typically the corresponding string in the source file)
and a vector of children. Except for a few built-in tokens,
tokens are language-specific and defined by the language de-
veloper as TokenDef objects given a unique name and optional
flags. The following example shows the token definitions for
integers, the addition operator and parentheses:
inline const TokenDef Int = TokenDef("int", flag::print);
inline const TokenDef Add = TokenDef("+");
inline const TokenDef Paren = TokenDef("()");

Group

Fun

Ident“f”

=

Ident“x”

Ident“x”

Group

Int:“1”

Add

Paren

Add

Int:“2”

Int:“3”

Group

Int:“1” Add Paren

AddInt:“2” Int:“3”

Paren

Group

Int:“2”

Group

>_

push(Paren) Group

Paren

Group

>_

Group add(Int) term()

>_

Paren

Group

Group pop(Paren)

Int:“2”

>_

Paren

Group

Group

Int:“2”

>_

Group

Add Int:“4”

Figure 2. The parse tree for 1+(2+3)+4. The Int token has
the print flag which means that it is printed with its value.

The Int token is defined with the flag print meaning that
the value of an Int node is included when printing the tree.
The parser is implemented as a sequence of parse rules

which are tried in order. A parse rule takes the general form
regex >> parse effect, where the parse effect is a function
(here written as a C++ lambda function) that inserts nodes
in the parse tree. Trieste implicitly groups parsed tokens un-
der explicit Group nodes, allowing the language developer to
defer some nesting to later rewrite passes, similar to the pars-
ing of shrubbery notation in Rhombus [6]. As an example,
consider the parse rules for the above token definitions:
"[[:digit:]]+\\b" >> [](Make& m) {m.add(Int); } // Integers
"+" >> [](Make& m) {m.add(Add); } // '+'
"\\(" >> [](Make& m) {m.push(Paren); } // Enter Paren node
"\\)" >> [](Make& m) {m.term(); m.pop(Paren); } // Exit Paren node

Figure 2 shows the result of parsing “1+(2+3)+4” with these
rules. The “1” matches the first rule, which adds an Int node
with value “1”. Whenever a node is added, a Group node is
implicitly created as its parent unless it already exists. The
“+” matches the second rule that adds an Add node as a sibling
to the Int node. The left parenthesis matches the third rule
that pushes a Paren node to the tree, which adds a Paren node
and causes subsequent nodes be added as children. When the
“2” is added a new Group node is created, which becomes the
parent of the “2” and the subsequent “+” and “3”. The right
parenthesis is parsed with the fourth rule that first termi-
nates the current Group (m.term()) and then terminates the
Paren node (m.pop(Paren)) such that the subsequent nodes
for “+” and “4” are added as siblings instead of children. The
difference between term() and pop() is that pop() reports an
error if we are not terminating the expected node.
The parser also has a mode feature for grouping parse

rules and switching between them (similar modes exist in
ANTLR [11]). The parse rule for opening comments in the de-
fault mode (not shown here) switches to a separate "comment"
mode, with three parse rules:
p("comment", { // Comment mode
"\\(*" >> [depth](Make&){ ++(*depth); }, // Increase depth
"*\\)" >> [depth](Make& m){

// Decrease depth, switch back to default mode if depth is zero
if (--(*depth) == 0) {
m.mode("start"); } },

".|\n" >> [](Make&){} }); // Ignore other tokens

A variable depth is used to ensure correct nesting, which is
checked in the rule for *) to determine whether to escape
the comment mode and return to the default mode "start".

185

Trieste: A C++ DSL for Flexible Tree Rewriting SLE ’24, October 20–21, 2024, Pasadena, CA, USA

While introducing simple nesting with push and pop is
useful, it is not required, nor does the implementer need
to define more than a single mode. Using add() as the only
parse effect will produce a flat tree with a single group of
tokens, essentially giving the same result as a lexer.

2.2 Well-Formedness Checking
Each pass has aWF specification serving as its postcondition.
The main purpose is checking that a rewrite pass results in
a tree of the expected shape. A failed check signals a bug
in that pass. The WF specification is quite general after the
initial parsing pass since most nodes are either a child of a
Group node or have a sequence of Group nodes as children. It
then becomes increasingly specific with each rewrite pass.
A WF specification consists of a list of shapes. A shape

takes the form parent_token <<= child_tokens and specifies
the shape of a subtree with the parent token as root. As an
example, consider the WF specification for a pass rewriting
multiplicative expressions:
inline const wf::Wellformed wf_mul = wf_funapp // Previous WF
| (Expr <<= (Mul | Add | /∗...∗/ | Int)++[1]) // Expr has ≥ 1 children
| (Mul <<= (Lhs >>= Expr) * (Rhs >>= Expr)); // Lhs and Rhs are labels

The above specification starts by copying the WF specifica-
tion from the previous pass (wf_funapp) and then adds new
shapes. The inner | denotes choice: we specify that Expr
nodes can only have children that are Mul, Add or Int etc.
Furthermore, they must have at least one child (++[1]). The *
denotes sequence: Mul nodes must have exactly two children
of type Expr. These are labelled Lhs and Rhs respectively, us-
ing the >>= operator. Labels are optional and can be used as
selectors: given a Mul node m, the left child can be accessed by
m/Lhs. The labels themselves are TokenDef objects, allowing
fast comparisons. During pass execution, the labels used for
selection is dictated by the previous and current WF specifi-
cations. Arbitrary specifications can also be used outside of
a pass sequence to label and access nodes.
Just as the WF specification acts as the postcondition of

one pass, it is also the precondition of the following pass.
The WF specifications can therefore be used to generate
random well-formed trees for any pass. Using this, Trieste
provides automated fuzz-testing of any sequence of rewrite
passes, giving developers a simple way to find valid inputs
that trigger errors in their passes.

2.3 Rewriting
A Trieste program contains a sequence of rewrite passes. A
rewrite pass, in turn, consists of a sequence of rewrite rules.
Each pass has a specified direction of traversal, bottom-up or
top-down, and is run once or until fixpoint. Trieste tries to
apply all rules at the current node before continuing to the
next node in traversal order. The sequence of rewrite rules is
analogous to a rewrite strategy as defined in languages like
Stratego [19] and ELAN [2], but with an implicit sequence
operator between the rewrite rules.

A rewrite rule has the general form pattern >> effect. A
pattern describes the structure of a subtree, and an effect is
a function from the matched subtree to a modified subtree
that should replace the matched one. As an example, con-
sider the following rule from the pass that rewrites additive
expressions in the same way multiplications were structured
in the WF specification in the previous section:

In(Expr) * T(Expr)[Lhs] * T(Add)[Op] * T(Expr)[Rhs] >>
[](Match& m){ return Expr << (m(Op) << m[Lhs] << m[Rhs]); }

The * denotes a sequence: the pattern in the rule above
matches three nodes: an Expr node followed by an Add node
and another Expr node, all of which are immediate children
of an Expr node (In(Expr)). The resulting node is wrapped
in an Expr node since it might be a subexpression in a larger
expression. Patterns may be labelled using the [] opera-
tor which makes it possible to access specific parts of the
matched subtree m within the effect. Note that this rule will
match a subtree as long as the correct sequence is found
inside an Expr node – what comes before and after these
nodes is not specified. In the effect, << is used to denote a
parent/child relationship: after this rewrite rule is applied
the Add node will be the parent of its previous siblings. The
full pass definition and an example of an input-output tree
are given in Appendix A.
The pattern can be extended to also handle subtraction

by replacing T(Add) with T(Add,Sub) (T lists a disjunction
of tokens) instead of adding an almost identical rule for
subtraction. Addition and subtraction can be rewritten by
the same rule within the same pass since they have the same
precedence. On the other hand, multiplication has higher
precedence than addition and is, therefore, processed in a
prior (albeit very similar) pass. This rewrite rule changes the
structure of additive expressions and the WF specification is
updated accordingly:

inline const wf::Wellformed wf_add = wf_mul // Previous WF
| (Add <<= (Lhs >>= Expr) * (Rhs >>= Expr))
| (Sub <<= (Lhs >>= Expr) * (Rhs >>= Expr))

Rewrite passes can be further modularized into readers,
rewriters and writers. The reader contains a parsing pass and
possibly further rewrite passes. A rewriter contains passes
to transform one tree to another (see Section 3.2). Finally,
the writer starts from a tree, performs some rewrites, and
then writes the final tree to a file. This modularization allows
reusing code and building pipelines of rewrite passes.

2.4 Name Binding with Symbol Tables
Most programming languages support some form of scoped
name binding. In Trieste, nodes with certain tokens can be
specified to hold symbol tables which map node values (e.g.
variable names) to nodes in the tree (e.g. the definition where
the variable is bound). The scope of the symbol table covers
every descendant of its node. Scopes may be nested.

186

SLE ’24, October 20–21, 2024, Pasadena, CA, USA Sylvan Clebsch, Matilda Blomqvist, Elias Castegren, Matthew A. Johnson, and Matthew J. Parkinson

In MiniML, each function introduces a new scope in addi-
tion to the global program scope. Therefore, every node of
type Fun and Program will hold a symbol table:
inline const TokenDef Fun = TokenDef("fun", flag::symtab);
inline const TokenDef Program = TokenDef("program",

flag::symtab | flag::defbeforeuse);

The symbol table in a Fun nodemaps parameters and function
names to their respective bind sites. The symbol table in a
Program node maps let-bound names to their definitions (let
is the only top-level definition in MiniML). The Program node
also has the defbeforeuse flag meaning that a lookup in this
symbol table will not return anything if the symbol being
looked up occurs before its definition in the source file.

Symbol tables are used in our MiniML compiler frontend
for accessing types of bound identifiers when checking types
of (identifier) expressions. Symbol table bindings are defined
in the WF specification. Consider the following WF speci-
fication for a first type inference pass that adds fresh type
variables to bound names (shapes irrelevant to symbol table
bindings are omitted):
inline const wf::WellFormed wf_fresh = reader_::wf // Previous WF
| (Fun <<= FunDef) // Holds symbol table for Fun name and Param
| (FunDef <<= Ident * Type * Param * Expr)[Ident] // Bind functions
| (Param <<= Ident * Type)[Ident] // Bind parameters
| (Let <<= Ident * Type * Expr)[Ident]; // Bind let definitions

The [Ident] after the FunDef, Param and Let shape tells us
that each node of these types should be added to their closest
nesting symbol table with their Ident value as lookup key.
For this to work, their TokenDefs must have the lookup flag:
inline const TokenDef Param =
TokenDef("param", flag::lookup | flag::shadowing);

inline const TokenDef FunDef =
TokenDef("fundef", flag::lookup | flag::shadowing);

inline const TokenDef Let = TokenDef("let", flag::lookup);

The Param and FunDef tokens also have the flag shadowing:
storing a node with any of these tokens in a symbol table
shadows any other nodeswith the same key in nesting scopes
and prohibits nodes with the same key from being bound in
the same scope.

Symbol tables are populated between two rewrite passes,
meaning that it is the WF specification of the previous pass
that defines how nodes are bound. Thus, after the first infer-
ence pass it is possible to look up names in the symbol tables.
For example, consider a rule for inferring types of identifier
expressions in a later pass:
T(Expr) << T(Ident)[Ident] >>
[](Match& m) {
Nodes defs = m(Ident)->lookup(); // Symbol table lookup
if (defs.size() != 0){
Node def = (defs.back())->clone(); //Latest definition
return Expr << def/Type << m(Ident); }

else {
return err(m(Expr),"unbound name" + m(Ident)); } },

The rule matches an Expr node whose child is an Ident. The
lookup() method returns a vector of Fun,Param or Let nodes
whose Ident node has the same value as the matched one.
As MiniML allows multiple let bindings with the same name

in the same scope we take the last element of the vector, i.e.
the latest binding. The / operator for field accesses comes in
handy here – all nodes that can be looked up have a child
implicitly labelled Type so def/Type gives the Type node.
If the lookup returns an empty vector, no identifier with

this value was bound to a symbol table in scope and the
matched Expr node is replaced by an Error node (abstracted
into the err() function). The Error tokens are pre-defined
and are used to signal any kind of user-facing errors during
parsing or rewriting.

3 Case Study: YAML and JSON
The dynamic nature of Trieste trees eases the manipulation
of data in multiple formats within the same codebase. To
demonstrate this, we provide fully compliant parsers for
YAML [14] and JSON [3], as well as a rewriter between the
two. They are available in the Trieste repository [17].

3.1 JSON
The JSON implementation in Trieste exposes this API:

inline const wf::Wellformed wf =
(Top <<= wf_value_tokens++[1])
| (Object <<= Member++)
| (Member <<= Key * (Value >>= wf_value_tokens))[Key]
| (Array <<= wf_value_tokens++);

Reader reader(bool allow_multiple);
Writer writer(const std::filesystem::path& path,

bool prettyprint, bool sort_keys,
const std::string& indent);

The reader comprises three passes:
1. Parse: Tokenizes input with nested braces/brackets
2. Groups: Specializes the Group nodes from the parser

to ArrayGroup and ObjectGroup nodes.
3. Structure: Constructs Array and Object structures.

The writer can be used to output a well-formed AST as a
JSON file (by default, without whitespace). Readers and writ-
ers can be chained together (for example, to create a minifier):

json::reader().file("in.json") >> json::writer("in.min.json");

The json::writer function takes a file path as an argument
and creates a new Writer object with a single rewrite pass,
that traverses the tree once and consists of a single rule:

In(Top) * ValueToken++[Value] >> // Match a sequence of ValueTokens
[path](Match& m) {
return File << (Path ^ path.string()) // Add path to tree

<< (Contents << m[Value]); }

The ++ pattern greedily matches a sequence of zero or more
ValueTokens under the Top node. It is replaced by a File

node with a new Path node carrying the given path, and a
Contents node grouping the sequence of ValueTokens. This is
the structure that a Writer object expects. Note that m[Value]
gives the matching sequence of ValueTokens – m(Value) used
in previous examples gives a single node.

187

Trieste: A C++ DSL for Flexible Tree Rewriting SLE ’24, October 20–21, 2024, Pasadena, CA, USA

3.2 YAML
YAML is a more complex data language than JSON, adding
meaningful whitespace, default values, aliases/anchors, block
literals, and more. The YAML reader comprises 16 passes,
including passes for parsing and grouping, nesting by inden-
tation, handling and block and flow-style constructs, and
validating tags and anchors. Trieste’s design allows for each
pass to focus on a single task which makes a small edit to
the WF specification. For example, here is the specification
for the attributes pass which handles node tags and anchors:

const wf::Choice attr_tokens = (col_tokens | AnchorVal | TagVal);
const wf::Choice attrval_tokens =
attr_tokens - (DocumentStart | DocumentEnd);

const wf::Choice attr_flow_tokens =
fgroup_tokens | AnchorVal | TagVal;

const wf::Wellformed wf_attr = wf_coll
| (AnchorVal <<= Anchor * (Val >>= attrval_tokens))
| (TagVal <<= TagPrefix * TagName * (Val >>= attrval_tokens))
| (DocumentGroup <<= attr_tokens++)
| (FlowGroup <<= attrflow_tokens++)
| (KeyGroup <<= attrvalue_tokens++)
| (ValueGroup <<= attrvalue_tokens++);

Note how the token lists can be expanded with the | operator,
or reduced with the - operator.

In addition to a reader, the YAML implementation provides
writers for both standard YAML and YAML events, as well
as a rewriter for conversion from YAML to JSON. As such,
one can write a YAML to JSON converter in a single line:

yaml::reader().file("input.yaml") >> yaml::to_json() >>
json::writer("output.json");

4 Case Study: Rego
The rego-cpp compiler and runtime for Rego (the policy lan-
guage of the Open Policy Agent [5]) is fully implemented
in Trieste [16]. Whereas the reader exposed by the rego-cpp

implementation is similar to the JSON and YAML readers
above in that it parses input files and creates ASTs, the unify
rewriter is quite different. It takes as input an AST which
merges one or more ASTs (from data files, modules, or in-
put terms) with a query. The passes then resolve the query
by performing unification. While the final step happens in
pure C++, most of the work is done by Trieste passes which
transform the AST into a form which is more easily unified.

These passes go beyond simple parsing to actions like lift-
ing comprehensions as rules, or performing capture analysis.
The hybrid nature of Trieste (as a DSL for tree rewriting
within a C++ program) is what enables this. For example,
here is a rule which uses an action in the pattern (the lambda
in parentheses) as a further constraint on the pattern, adding
a deep analysis (here, whether a term is constant):

In(RuleComp, RuleFunc, RuleSet, DefaultRule) *
T(Term)[Term]([](NodeRange& n) { // Action lambda
return is_constant(n.front()); }) >>

[](Match& m) { return DataTerm << *m[Term]; }

The prefix * in the effect gets the children of its operand. As
another example, this code supplies a pre-condition action
for a pass definition:

unify.pre(Rego, [builtins](Node node) {
Node query = node / Query;
try {
Nodes results = Resolver::resolve_query(query, builtins);
node->replace(query, Query << results);

} catch (const std::exception& e) {
node->replace(query, err(query, e.what()));

} return 0; });

This code will execute once for each Rego node, replacing
the query with the results of the unification.

5 Discussion and Future Work
In Trieste, the shape of the AST evolves with each rewrite
pass. The full grammar of the abstract syntax does not need
to be specified upfront; we can explore a suitable representa-
tion one rewrite pass at a time. We believe this makes Trieste
suitable for language prototyping: some kinds of nodes can
be processed carefully, while others can be ignored – rewrite
passes will still traverse the entire tree and simply ignore
subtrees that never match. Adding a new kind of node con-
sists of adding a new token definition. No class hierarchies
or visitor classes need to be extended, and existing rewrite
passes will continue to work as before.

While selectors (e.g. n/Lhs) facilitate interactingwith nodes
when dropping to C++, the dynamic tree shape means that
the compiler will not stop you from using incorrect labels
to access node (in contrast to having static types). Since the
shape of a tree can change even within a single pass, having
pattern matching is crucial for safely updating the tree.

Name bindings, selectors, and specifications never silently
go out of sync since the WF specification is used for all three.
We have also found that the automatic fuzz testing (also
provided using the WF specification) helps uncover mistakes
in rewrite passes. Failed fuzz tests implicitly provide hints
for appropriate Error-rules and catch corner cases.
In ongoing and future work we are defining the formal

semantics of Trieste in order to explore new designs and
prove properties of the language. Among other things we
are looking at improving the expressivity of WF specifica-
tions, automatically detecting patterns which are malformed
or which will never match, and verifying the soundness of
future optimizations.

In addition to the examples and case studies presented in
this paper, Trieste has been used to implement a bytecode
compiler for a Python-like language with linear types and in
the development of the Verona compiler [18], which targets
LLVM bytecode. Trieste is available as open source [17].

A Trieste Examples in Context
The following example shows the definition of our MiniML
parser (omitting most rules for brevity). Note the comment

188

SLE ’24, October 20–21, 2024, Pasadena, CA, USA Sylvan Clebsch, Matilda Blomqvist, Elias Castegren, Matthew A. Johnson, and Matthew J. Parkinson

rules that switch between two parse modes “start” and “com-
ment”. The done method takes a callback for when input is
exhausted. It closes any open Groups by default. Here it is
extended to check for unterminated comments and close the
statement separator ;;.
Parse parser() {
Parse p(depth::file, wf_parser); // Create parse object
auto depth = std::make_shared<size_t>(0); // Nesting depth
p("start", // Add parse rules to default mode
{ "[[:digit:]]+\\b" >> [](Make& m) { m.add(Int); },
"+" >> [](Make& m) { m.add(Add); },
"\\(" >> [](Make& m) { m.push(Paren); },
"\\)" >> [](Make& m) { m.term(); m.pop(Paren); },
"\\(*" >> [depth](Make& m) { // Open comment
++(*depth); // Increase nesting depth of comment
m.mode("comment"); }, // Switch to comment mode

/∗ Remaining parse rules omitted for brevity ∗/
});
p("comment", // Comment mode
{ "\\(*" >> [depth](Make&) { ++(*depth); }, // Increase depth
"*\\)" >> [depth](Make& m) { // Decrease depth
// Switch back to the start mode if depth == 0
if (--(*depth) == 0) m.mode("start"); },

".|\n" >> [](Make&) {} // Ignore other tokens
});

p.done([depth](Make& m) // Called when parsing is done
{ *depth = 0; // Reset depth value
if (m.mode() == "comment")
m.error("Unterminated comment");

m.term({SemiSemi}); // Terminate group and ;;
});

return p; } // Return parse object

A rewrite rule for additive expressions was shown in Sec-
tion 2.3, here the complete pass definition is given. The pat-
tern -- succeeds only if the provided pattern does not match:
PassDef add_sub(){
return { "add_sub", wf_add, dir::topdown, {
In(Expr) * (T(Expr)[Lhs] * T(Add,Sub)[Op] * T(Expr)[Rhs]) >>
[](Match& m){ return Expr << (m(Op) << m[Lhs] << m[Rhs]); },

// Return an Error node if we don't have exactly two Expr nodes as children
T(Add,Sub)[Add] << --(T(Expr) * T(Expr) * End) >>
[](Match& m){ return err(m[Add], "invalid expression"); }

}}; }

Figure 3 shows the tree from Figure 2 immediately before
and after the add_sub pass. Group and Paren nodes from the
initial parse tree have been replaced by Expr nodes in a pre-
vious pass. The add_sub pass associates Add and Sub nodes

Group

Fun

Ident“f”

=

Ident“x”

Ident“x”

Group

Int:“1”

Add

Paren

Add

Int:“2”

Int:“3”

Expr

Int:“1” Add

AddInt:“2” Int:“3”

Expr Add Int:“4”

Add

Add

Expr Expr

Int:“4”

Int:“2” Int:“3”

Expr

Int:“1”

Expr

Expr

Add

Expr Expr

Expr

Figure 3. The intermediate tree representations of
“1+(2+3)+4” immediately before and after the add_sub pass.

with their operands, giving a shape that is more like an AST
than in Figure 2. The superfluous Expr node is a trade-off for
keeping the rules simple and is removed by a later pass.

References
[1] Andrej Bauer. 2024. miniml. https://plzoo.andrej.com/language/

miniml.html. Accessed: 2024-06-27.
[2] Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Pierre-

Etienne Moreau. 2002. ELAN from a rewriting logic point of view.
Theoretical Computer Science 285, 2 (Aug. 2002), 155–185. https:
//doi.org/10.1016/S0304-3975(01)00358-9

[3] T. Bray. 2017. RFC 8259: The JavaScript Object Notation (JSON) Data
Interchange Format.

[4] Sylvan Clebsch, Matilda Blomqvist, Elias Castegren, Matthew A.
Johnson, and Matthew J. Parkinson. 2024. trieste-miniML. https:
//github.com/fxpl/trieste-miniml.

[5] Open Policy Agent contributors. 2024. Rego. https://www.
openpolicyagent.org/docs/latest/policy-language/. Accessed: 2024-
06-18.

[6] Matthew Flatt, Taylor Allred, Nia Angle, Stephen De Gabrielle,
Robert Bruce Findler, Jack Firth, Kiran Gopinathan, Ben Greenman,
Siddhartha Kasivajhula, Alex Knauth, Jay McCarthy, Sam Phillips, So-
rawee Porncharoenwase, Jens Axel Søgaard, and Sam Tobin-Hochstadt.
2023. Rhombus: A New Spin on Macros without All the Parentheses.
Proc. ACM Program. Lang. 7, OOPSLA2, Article 242 (oct 2023), 30 pages.
https://doi.org/10.1145/3622818

[7] Markus Forsberg and Aarne Ranta. 2004. BNF converter. In Proceedings
of the 2004 ACM SIGPLAN Workshop on Haskell (Snowbird, Utah, USA)
(Haskell ’04). https://doi.org/10.1145/1017472.1017475

[8] Stephen C Johnson. 1978. Yacc: Yet another compiler-compiler.
[9] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax language work-

bench. In OOPSLA ’10. Association for Computing Machinery, New
York, NY, USA, 237–238. https://doi.org/10.1145/1869542.1869592

[10] Simon Marlow and the Alex developers. 2024. Alex. https://github.
com/haskell/alex. Accessed: 2024-06-19.

[11] Terence Parr. 2024. ANTLR. https://www.antlr.org/about.html. Ac-
cessed: 2024-06-19.

[12] Vern Paxson et al. 2024. Flex. https://github.com/westes/flex. Accessed:
2024-06-19.

[13] GNU Project. 2024. Bison. https://www.gnu.org/software/bison/. Ac-
cessed: 2024-06-19.

[14] YAML Language Development Team. 2024. YAML 1.2.2 Specification.
https://yaml.org/spec/1.2.2/. Accessed: 2024-06-18.

[15] Contributors to LLVM. 2024. LibASTMatchers. https://clang.llvm.org/
docs/LibASTMatchersReference.html. Accessed: 2024-06-19.

[16] Contributors to the rego-cpp project. 2024. rego-cpp. https://github.
com/microsoft/rego-cpp.

[17] Contributors to the Trieste project. 2024. Project Trieste. https://
github.com/microsoft/Trieste.

[18] Contributors to the Verona project. 2024. The Verona Language. https:
//github.com/microsoft/verona.

[19] Eelco Visser. 2001. Stratego: A Language for Program Transformation
Based on Rewriting Strategies System Description of Stratego 0.5. In
Rewriting Techniques and Applications. Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-45127-7_27

Received 2024-06-24; accepted 2024-08-30

189

https://plzoo.andrej.com/language/miniml.html
https://plzoo.andrej.com/language/miniml.html
https://doi.org/10.1016/S0304-3975(01)00358-9
https://doi.org/10.1016/S0304-3975(01)00358-9
https://github.com/fxpl/trieste-miniml
https://github.com/fxpl/trieste-miniml
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://doi.org/10.1145/3622818
https://doi.org/10.1145/1017472.1017475
https://doi.org/10.1145/1869542.1869592
https://github.com/haskell/alex
https://github.com/haskell/alex
https://www.antlr.org/about.html
https://github.com/westes/flex
https://www.gnu.org/software/bison/
https://yaml.org/spec/1.2.2/
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://github.com/microsoft/rego-cpp
https://github.com/microsoft/rego-cpp
https://github.com/microsoft/Trieste
https://github.com/microsoft/Trieste
https://github.com/microsoft/verona
https://github.com/microsoft/verona
https://doi.org/10.1007/3-540-45127-7_27

	Abstract
	1 Introduction
	2 Trieste by Example
	2.1 Parsing
	2.2 Well-Formedness Checking
	2.3 Rewriting
	2.4 Name Binding with Symbol Tables

	3 Case Study: YAML and JSON
	3.1 JSON
	3.2 YAML

	4 Case Study: Rego
	5 Discussion and Future Work
	A Trieste Examples in Context
	References

