
Elias Castegren Tobias Wrigstad

first.last@it.uu.se

Reference Capabilities
for Concurrency Control Uppsala Programming for Multicore

Architectures Research Center

trait Add
 var first : Link
 def add(e : T) : void { … }

linear

thread

locked

read

subordinate

unsafe

Same code template safe
for different use cases

Globally unique

Thread-local

Synchronised

Read-only

Encapsulated

Requires synch.

class ArrayList = unsafe Add ⊕ …

class Vector = locked Add ⊕ …

class List = Add ⊕ …

Reuse traits across different
concurrency scenarios

unsafe

locked

class List {...}

Is aliased?
Accessed

concurrently?

Implicit/explicit
synchronisation? Are subtypes

thread-safe?

Is thread-safe?

Composition ⇒ Parallelism

Different combinations of modes express different patterns

readers-writer locks

🔐 or

⊕

fractional permissions

locked read

🔐
🔐

regions and effects

⊗

⊕linear read

or

Subordinate

external uniqueness

linear

subordinate

Concurrency imposes many concerns

✓No data-races
Traits can assume exclusive
access to the underlying object

✓No code duplication
Separate business logic from
concurrency concerns

✓No effect system
References can always be used
to the full extent of their types

class Pair =
 linear Fst ⊗ linear Snd

let f, s = consume p;
finish{
 async{f.set(x)}
 async{s.set(y)}
}

Fst Snd

Fst Snd

f s

{

And more!

mode

Conjunctions share no fields

