Capable: Capabilities for Scalability

Current state of design

Elias Castegren, Tobias Wrigstad
forename.surname@it.uu.se

IWACO 2014, Uppsala

UPALA UP/\/\ARC 5

UNIVERSITET

/22



Introduction

» Safe parallel programming using capabilities

» Scalability and performance rather than verification

N

22



Background

» Ownership types prescribe structure




Background

» Ownership types prescribe structure




Background

» Ownership types prescribe structure




Background
» Ownership types prescribe structure

» Effect systems describe usage



Background
» Ownership types prescribe structure

» Effect systems describe usage

3/22



Background
» Ownership types prescribe structure

» Effect systems describe usage

22



Background
» Ownership types prescribe structure

> Effect systems describe usage

/22



Background
» Ownership types prescribe structure
» Effect systems describe usage
» We're aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.



Outline

Introduction
Background
Capabilities

» Traits and classes

Composition, splitting and merging
Nesting and parametricity

Composition as abstract memory layout specification

22



Capabilities

> A capability governs access to some resource

22



Capabilities

> A capability governs access to some resource
» Capability ~ (Reference, {allowed operations})

5/22



Capabilities

> A capability governs access to some resource
» Capability ~ (Reference, {allowed operations})

‘Capability

5/22



Capabilities

> A capability governs access to some resource
» Capability ~ (Reference, {allowed operations})

Exclusive Non-exclusive

5/22



Capabilities

> A capability governs access to some resource
» Capability ~ (Reference, {allowed operations})

Exclusive Non-exclusive

Unsafe

5/22



Capabilities

> A capability governs access to some resource
» Capability ~ (Reference, {allowed operations})

Exclusive Non-exclusive

Safe Unsafe

Locks
Transactions
Immutable
Lock-free

5/22



Safety

» Orthogonal to the design of our system: Plug in your favorite
synchronization mechanism!

6 /22



Safety

» Orthogonal to the design of our system: Plug in your favorite
synchronization mechanism!
> Baseline:

» No write-write conflicts outside of unsafe capabilities
» Exclusive capabilities are (and remain) exclusive

6 /22



Safety

» Orthogonal to the design of our system: Plug in your favorite
synchronization mechanism!
> Baseline:
» No write-write conflicts outside of unsafe capabilities
» Exclusive capabilities are (and remain) exclusive
» Our focus: Lock-free capabilities with static support for
speculation and publication of values (see paper for more
details)

6

22



Traits

» Capabilities are introduced using traits:

safe trait Get{
require int value;
int getO{
return this.value;
}
}

22



Traits

» Capabilities are introduced using traits:

safe trait Get{
require int value;
int getO{
return this.value;
}
}

» Traits are exclusive by default:

trait Set{
require int value;
void set(int val){
this.value = val;

22



Classes

trait Set{ safe trait Get{
require int value; require int value;
void set(int val)... int get()...

> Classes are formed by composing traits:

class Cell = Set @ Get*{
provide int value;

22



Classes

trait Set{ safe trait Get{
require int value; require int value;
void set(int wval)... int getQ...

> Classes are formed by composing traits:

class Cell = Set @ Get*{
provide int value;

» Class types are composite capabilities:
Cell ¢ = new Cell;

c.set(42);
c.getO; // = 42

22



Composition and splitting

» A disjunction can be split into either of its components:

A

A A

Cell = Set @ Get™*

22



Composition and splitting (Cell = Set @ Get")

x = new Cell;

A
S

10/22



Composition and splitting (Cell = Set @ Get")

x = new Cell; x.set(42);

) )

10/22



Composition and splitting (Cell = Set @ Get")

x = new Cell; x.set(42);

A L
D

x = (Get™) consume x;

L
L

10/22



Composition and splitting (Cell = Set @ Get")

x = new Cell; x.set(42);

x = (Get™) consume x;

R o
)

x\\/jk\//yf

10/22



Composition and splitting

» A disjunction can be split into either of its components:

or

Cell = Set @ Get™*

» A conjunction can be split into both of its components:

Pair = Cell ® Cell

11/22



Composition and splitting (Pair = Cell ® Cell)

p = new Pair;

12/22



Composition and splitting (Pair = Cell ® Cell)

p = new Pair; Cell cl1, c2 = consume p;

12/22



Composition and splitting (Pair = Cell ® Cell)

p = new Pair; Cell cl1, c2 = consume p;

cl and c2 are aliases, but can only access “their half” of the Pair:

cl— '

12/22



Splitting and merging

Pair = Cell ® Cell

13/22



Splitting and merging

13/22



Splitting and merging

13/22



Merging

» Structured split and merge
Pair p = ...;
split p into Cell c1, c2 in{
... // p is invalidated
}

// p is reinstated

14 /22



Merging

» Structured split and merge

Pair p =
split p into Cell c1, c2 in{

// p is invalidated

*

}
// p is reinstated

» Unstructured split and merge

Pair p =
Cell c1, c2 = consume p;

*

p = consume cl ® consume c2
// cl and c2 are invalidated

14 /22



Merging

» Structured split and merge

Pair p =
split p into Cell c1, c2 in{

// p is invalidated

*

}
// p is reinstated

» Unstructured split and merge

Pair p =
Cell c1, c2 = consume p;

*

p = consume cl ® consume c2 < dynamic alias check!
// c1 and c2 are invalidated

14 /22



Merging
» What about disjunction?

Cell = Set @ Get™*

15 /22



Merging

» What about disjunction?

A

Set

15 /22



Merging

» What about disjunction?

Set

15 /22



Merging

» What about disjunction?

Set

» The Get capability is lost!

15/22



Splitting with Jails

» Cell = Set @ Get* means Set and Get™ may not be used

in parallel
Set @ Get*

Cell

16 /22



Splitting with Jails

» Cell = Set @ Get* means Set and Get™ may not be used

in parallel
‘ and

Set ® J<Get*>

> A jailed capability is an alias with an empty interface

16

22



Splitting with Jails

» Cell = Set @ Get* means Set and Get™ may not be used
in parallel

Cell

> A jailed capability is an alias with an empty interface

16 /22



Splitting with Jails

» Cell = Set @ Get* means Set and Get™ may not be used
in parallel

Cell

> A jailed capability is an alias with an empty interface

» Jails can turn any disjunction c; @ cp into a conjunction
c1 ® J{ca), which can be split and merged in a non-lossy way

16 /22



Recap

» Capabilities are either exclusive, safe or unsafe

17 /22



Recap

» Capabilities are either exclusive, safe or unsafe

» Traits specify behaviour and introduce capability types.

17 /22



Recap

» Capabilities are either exclusive, safe or unsafe

» Traits specify behaviour and introduce capability types.
» Classes introduce composite capability types

17 /22



Recap

» Capabilities are either exclusive, safe or unsafe
» Traits specify behaviour and introduce capability types.
» Classes introduce composite capability types

» A disjunction c; @ c; can be split into either c; or co

17 /22



Recap

» Capabilities are either exclusive, safe or unsafe

» Traits specify behaviour and introduce capability types.
» Classes introduce composite capability types

» A disjunction c; @ c; can be split into either c; or co
» A conjunction c; ® cp can be split into both c; and ¢, which
may be used in parallel

17 /22



Recap

» Capabilities are either exclusive, safe or unsafe
» Traits specify behaviour and introduce capability types.
» Classes introduce composite capability types
» A disjunction c; @ c; can be split into either c; or co
» A conjunction c; ® cp can be split into both c; and ¢, which
may be used in parallel
» Merging can be used to regain composite capabilities in both

structured and unstructured ways

17 /22



Co-encapsulation through nesting
» Parametricity exposes internal details about a nested
capability
class List(T) = Add(T) @ Del(T) @ Nth*(T){
provide Link(T) first;

}

18 /22



Co-encapsulation through nesting
» Parametricity exposes internal details about a nested
capability
class List(T) = Add(T) @ Del(T) @ Nth*(T){
provide Link(T) first;

}

or or

List<T> = Add<T> @ Del<T> @ Nth*<T>

18 /22



Co-encapsulation through nesting
» Parametricity exposes internal details about a nested
capability
class List(T) = Add(T) @ Del(T) @ Nth*(T){
provide Link(T) first;
}

or or

List<T> = Add<T> @ Del<T> @ Nth*<T>

List<Pair>

18/22



Nesting and splitting

List(T) = Add(T) @ Del(T) @ Nth*(T)
Pair = Cell ® Cell

List<Pair>

19 /22



Nesting and splitting

List(T) = Add(T) @ Del(T) @ Nth*(T)
Pair = Cell ® Cell

List<Pair>

Outer split:
Nth*<Pair>

19/22



Nesting and splitting

List(T) = Add(T) @ Del(T) @ Nth*(T)
Pair = Cell ® Cell

List<Pair>

Outer split:
Nth*<Pair>

and

Inner split:
Nth*<Cell> &® Nth*<Cell>

19/22



Composition as abstract memory layout specification

» Cache locality is good! Data accessed together by a single
thread should be on the same cache line

20 /22



Composition as abstract memory layout specification

» Cache locality is good! Data accessed together by a single
thread should be on the same cache line

» False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

20 /22



Composition as abstract memory layout specification

» Cache locality is good! Data accessed together by a single
thread should be on the same cache line

» False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

» Different splitting semantics suggest different access patterns:

c = c1 @ cp = c1 and cp accessed together or separately

20 /22



Composition as abstract memory layout specification

» Cache locality is good! Data accessed together by a single
thread should be on the same cache line

» False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

» Different splitting semantics suggest different access patterns:

c = c1 @ cp = c1 and cp accessed together or separately
Keep ¢y and c3's resources on the same cache line!

20 /22



Composition as abstract memory layout specification

» Cache locality is good! Data accessed together by a single
thread should be on the same cache line

» False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

» Different splitting semantics suggest different access patterns:

c = c1 @ cp = c1 and cp accessed together or separately
Keep ¢y and c3's resources on the same cache line!

c = c1 ® cp = c1 and cp may be accessed in parallel

20 /22



Composition as abstract memory layout specification

» Cache locality is good! Data accessed together by a single
thread should be on the same cache line

» False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

» Different splitting semantics suggest different access patterns:

c = c1 @ cp = c1 and cp accessed together or separately
Keep ¢y and c3's resources on the same cache line!

c = c1 ® cp = c1 and cp may be accessed in parallel
Keep c1 and c,'s resources on different cache lines!

20 /22



What else?

> Merging non-exclusive capabilities
> Aliasing exclusive capabilities

> Lock-free capabilities

21/22



What else?

v

Merging non-exclusive capabilities

v

Aliasing exclusive capabilities

v

Lock-free capabilities

v

See paper for more details



Summary

» Safe aliasing through capability splitting (and merging)
» Capability composition hints efficient memory layout

> Lock-free capabilities for lock-free data structures

N
N

N



Summary

» Safe aliasing through capability splitting (and merging)
» Capability composition hints efficient memory layout

> Lock-free capabilities for lock-free data structures

What now?

» Implementation and evaluation
» Extend the support for lock-free data structures
» Add high level abstractions (e.g. Reagents [Turon 12])

N
N

N



Summary

» Safe aliasing through capability splitting (and merging)
» Capability composition hints efficient memory layout

> Lock-free capabilities for lock-free data structures

What now?

» Implementation and evaluation
» Extend the support for lock-free data structures
» Add high level abstractions (e.g. Reagents [Turon 12])

Thank you!

N
N

N



