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Introduction

I Safe parallel programming using capabilities

I Scalability and performance rather than verification
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Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.
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Outline

I Introduction

I Background

I Capabilities

I Traits and classes

I Composition, splitting and merging

I Nesting and parametricity

I Composition as abstract memory layout specification
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Capabilities
I A capability governs access to some resource

I Capability ' (Reference, {allowed operations})

Capability

Exclusive Non-exclusive

UnsafeSafe

Locks
Transactions
Immutable
Lock-free
...
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Safety

I Orthogonal to the design of our system: Plug in your favorite
synchronization mechanism!

I Baseline:
I No write-write conflicts outside of unsafe capabilities
I Exclusive capabilities are (and remain) exclusive

I Our focus: Lock-free capabilities with static support for
speculation and publication of values (see paper for more
details)
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Traits

I Capabilities are introduced using traits:

safe trait Get{
require int value;

int get(){
return this.value;

}
}

I Traits are exclusive by default:

trait Set{
require int value;

void set(int val){
this.value = val;

}
}
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Classes

trait Set{
require int value;

void set(int val)...

safe trait Get{
require int value;

int get()...

I Classes are formed by composing traits:

class Cell = Set ⊕ Get∗{
provide int value;

}

I Class types are composite capabilities:

Cell c = new Cell;

c.set(42);

c.get(); // = 42
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Composition and splitting

I A disjunction can be split into either of its components:

= or

= ⊕Cell Set Get*

I A conjunction can be split into both of its components:

= and

= ⊗Pair Cell Cell
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Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting

I A disjunction can be split into either of its components:

= or

= ⊕Cell Set Get*

I A conjunction can be split into both of its components:

= and

= ⊗Pair Cell Cell

11 / 22



Composition and splitting (Pair = Cell ⊗ Cell)

p = new Pair;

p

Cell c1, c2 = consume p;

p

c1
c2

c1 and c2 are aliases, but can only access “their half” of the Pair:

c1
c2
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Splitting and merging

= and

= ⊗Pair Cell Cell
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Splitting and merging

and

⊗Pair Cell Cell
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Splitting and merging

Pair
Pair
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Merging

I Structured split and merge
Pair p = ...;

split p into Cell c1, c2 in{
... // p is invalidated

}
... // p is reinstated

I Unstructured split and merge
Pair p = ...;

Cell c1, c2 = consume p;

...

p = consume c1 ⊗ consume c2

... // c1 and c2 are invalidated
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... // p is invalidated

}
... // p is reinstated

I Unstructured split and merge
Pair p = ...;

Cell c1, c2 = consume p;

...
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... // c1 and c2 are invalidated

14 / 22



Merging

I What about disjunction?

= or

= ⊕Cell Set Get*

I The Get capability is lost!
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Splitting with Jails

I Cell = Set ⊕ Get∗ means Set and Get∗ may not be used
in parallel

= or

= ⊕Cell Set Get*

I A jailed capability is an alias with an empty interface

I Jails can turn any disjunction c1 ⊕ c2 into a conjunction
c1 ⊗ J〈c2〉, which can be split and merged in a non-lossy way
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Recap

I Capabilities are either exclusive, safe or unsafe

I Traits specify behaviour and introduce capability types.
I Classes introduce composite capability types

I A disjunction c1 ⊕ c2 can be split into either c1 or c2
I A conjunction c1 ⊗ c2 can be split into both c1 and c2 which

may be used in parallel

I Merging can be used to regain composite capabilities in both
structured and unstructured ways
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Co-encapsulation through nesting
I Parametricity exposes internal details about a nested

capability

class List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉{
provide Link〈T〉 first;

}

=

=List<T> Add<T> Del<T> Nth*<T>⊕ ⊕

or or

List<Pair>
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Nesting and splitting

List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉
Pair = Cell ⊗ Cell

List<Pair>

Outer split:
Nth*<Pair>

Inner split:
Nth*<Cell> Nth*<Cell>⊗

and
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Composition as abstract memory layout specification

I Cache locality is good! Data accessed together by a single
thread should be on the same cache line

I False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

I Different splitting semantics suggest different access patterns:

c = c1 ⊕ c2 ⇒ c1 and c2 accessed together or separately

Keep c1 and c2’s resources on the same cache line!

c = c1 ⊗ c2 ⇒ c1 and c2 may be accessed in parallel
Keep c1 and c2’s resources on different cache lines!
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What else?

I Merging non-exclusive capabilities

I Aliasing exclusive capabilities

I Lock-free capabilities

I See paper for more details
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Summary

I Safe aliasing through capability splitting (and merging)

I Capability composition hints efficient memory layout

I Lock-free capabilities for lock-free data structures

What now?
I Implementation and evaluation

I Extend the support for lock-free data structures

I Add high level abstractions (e.g. Reagents [Turon 12])

Thank you!
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