
Capable: Capabilities for Scalability
Current state of design

Elias Castegren, Tobias Wrigstad
forename.surname@it.uu.se

IWACO 2014, Uppsala

Uppsala Programming for
Multicore Architectures
Research Center

1 / 22



Introduction

I Safe parallel programming using capabilities

I Scalability and performance rather than verification

2 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Background
I Ownership types prescribe structure

I Effect systems describe usage

I We’re aiming somewhere in-between:

Any structure is allowed as long as all aliases are
non-interfering.

3 / 22



Outline

I Introduction

I Background

I Capabilities

I Traits and classes

I Composition, splitting and merging

I Nesting and parametricity

I Composition as abstract memory layout specification

4 / 22



Capabilities
I A capability governs access to some resource

I Capability ' (Reference, {allowed operations})

Capability

Exclusive Non-exclusive

UnsafeSafe

Locks
Transactions
Immutable
Lock-free
...

5 / 22



Capabilities
I A capability governs access to some resource
I Capability ' (Reference, {allowed operations})

Capability

Exclusive Non-exclusive

UnsafeSafe

Locks
Transactions
Immutable
Lock-free
...

5 / 22



Capabilities
I A capability governs access to some resource
I Capability ' (Reference, {allowed operations})

Capability

Capability

Exclusive Non-exclusive

UnsafeSafe

Locks
Transactions
Immutable
Lock-free
...

5 / 22



Capabilities
I A capability governs access to some resource
I Capability ' (Reference, {allowed operations})

Capability

Exclusive Non-exclusive

Capability

Exclusive Non-exclusive

UnsafeSafe

Locks
Transactions
Immutable
Lock-free
...

5 / 22



Capabilities
I A capability governs access to some resource
I Capability ' (Reference, {allowed operations})

Capability

Exclusive Non-exclusive

UnsafeSafe

Capability

Exclusive Non-exclusive

UnsafeSafe

Locks
Transactions
Immutable
Lock-free
...

5 / 22



Capabilities
I A capability governs access to some resource
I Capability ' (Reference, {allowed operations})

Capability

Exclusive Non-exclusive

UnsafeSafe

Locks
Transactions
Immutable
Lock-free
...

5 / 22



Safety

I Orthogonal to the design of our system: Plug in your favorite
synchronization mechanism!

I Baseline:
I No write-write conflicts outside of unsafe capabilities
I Exclusive capabilities are (and remain) exclusive

I Our focus: Lock-free capabilities with static support for
speculation and publication of values (see paper for more
details)

6 / 22



Safety

I Orthogonal to the design of our system: Plug in your favorite
synchronization mechanism!

I Baseline:
I No write-write conflicts outside of unsafe capabilities
I Exclusive capabilities are (and remain) exclusive

I Our focus: Lock-free capabilities with static support for
speculation and publication of values (see paper for more
details)

6 / 22



Safety

I Orthogonal to the design of our system: Plug in your favorite
synchronization mechanism!

I Baseline:
I No write-write conflicts outside of unsafe capabilities
I Exclusive capabilities are (and remain) exclusive

I Our focus: Lock-free capabilities with static support for
speculation and publication of values (see paper for more
details)

6 / 22



Traits

I Capabilities are introduced using traits:

safe trait Get{
require int value;

int get(){
return this.value;

}
}

I Traits are exclusive by default:

trait Set{
require int value;

void set(int val){
this.value = val;

}
}

7 / 22



Traits

I Capabilities are introduced using traits:

safe trait Get{
require int value;

int get(){
return this.value;

}
}

I Traits are exclusive by default:

trait Set{
require int value;

void set(int val){
this.value = val;

}
}

7 / 22



Classes

trait Set{
require int value;

void set(int val)...

safe trait Get{
require int value;

int get()...

I Classes are formed by composing traits:

class Cell = Set ⊕ Get∗{
provide int value;

}

I Class types are composite capabilities:

Cell c = new Cell;

c.set(42);

c.get(); // = 42

8 / 22



Classes

trait Set{
require int value;

void set(int val)...

safe trait Get{
require int value;

int get()...

I Classes are formed by composing traits:

class Cell = Set ⊕ Get∗{
provide int value;

}

I Class types are composite capabilities:

Cell c = new Cell;

c.set(42);

c.get(); // = 42

8 / 22



Composition and splitting

I A disjunction can be split into either of its components:

= or

= ⊕Cell Set Get*

I A conjunction can be split into both of its components:

= and

= ⊗Pair Cell Cell

9 / 22



Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting (Cell = Set ⊕ Get∗)

x = new Cell;

x

x.set(42);

x

42

x = (Get∗) consume x;

x

42

x

42

y

å
p

z f

10 / 22



Composition and splitting

I A disjunction can be split into either of its components:

= or

= ⊕Cell Set Get*

I A conjunction can be split into both of its components:

= and

= ⊗Pair Cell Cell

11 / 22



Composition and splitting (Pair = Cell ⊗ Cell)

p = new Pair;

p

Cell c1, c2 = consume p;

p

c1
c2

c1 and c2 are aliases, but can only access “their half” of the Pair:

c1
c2

12 / 22



Composition and splitting (Pair = Cell ⊗ Cell)

p = new Pair;

p

Cell c1, c2 = consume p;

p

c1
c2

c1 and c2 are aliases, but can only access “their half” of the Pair:

c1
c2

12 / 22



Composition and splitting (Pair = Cell ⊗ Cell)

p = new Pair;

p

Cell c1, c2 = consume p;

p

c1
c2

c1 and c2 are aliases, but can only access “their half” of the Pair:

c1
c2

12 / 22



Splitting and merging

= and

= ⊗Pair Cell Cell

13 / 22



Splitting and merging

and

⊗Pair Cell Cell

13 / 22



Splitting and merging

Pair
Pair

13 / 22



Merging

I Structured split and merge
Pair p = ...;

split p into Cell c1, c2 in{
... // p is invalidated

}
... // p is reinstated

I Unstructured split and merge
Pair p = ...;

Cell c1, c2 = consume p;

...

p = consume c1 ⊗ consume c2

... // c1 and c2 are invalidated

14 / 22



Merging

I Structured split and merge
Pair p = ...;

split p into Cell c1, c2 in{
... // p is invalidated

}
... // p is reinstated

I Unstructured split and merge
Pair p = ...;

Cell c1, c2 = consume p;

...

p = consume c1 ⊗ consume c2

... // c1 and c2 are invalidated

14 / 22



Merging

I Structured split and merge
Pair p = ...;

split p into Cell c1, c2 in{
... // p is invalidated

}
... // p is reinstated

I Unstructured split and merge
Pair p = ...;

Cell c1, c2 = consume p;

...

p = consume c1 ⊗ consume c2 ← dynamic alias check!
... // c1 and c2 are invalidated

14 / 22



Merging

I What about disjunction?

= or

= ⊕Cell Set Get*

I The Get capability is lost!

15 / 22



Merging

I What about disjunction?

=

=Cell Set Get*

I The Get capability is lost!

15 / 22



Merging

I What about disjunction?

=

=Cell Get*
Set

I The Get capability is lost!

15 / 22



Merging

I What about disjunction?

=

=Cell Get*
Set

I The Get capability is lost!

15 / 22



Splitting with Jails

I Cell = Set ⊕ Get∗ means Set and Get∗ may not be used
in parallel

= or

= ⊕Cell Set Get*

I A jailed capability is an alias with an empty interface

I Jails can turn any disjunction c1 ⊕ c2 into a conjunction
c1 ⊗ J〈c2〉, which can be split and merged in a non-lossy way

16 / 22



Splitting with Jails

I Cell = Set ⊕ Get∗ means Set and Get∗ may not be used
in parallel

=

= ⊗Cell Set J<Get*>

and

I A jailed capability is an alias with an empty interface

I Jails can turn any disjunction c1 ⊕ c2 into a conjunction
c1 ⊗ J〈c2〉, which can be split and merged in a non-lossy way

16 / 22



Splitting with Jails

I Cell = Set ⊕ Get∗ means Set and Get∗ may not be used
in parallel

=

= ⊗
Cell

I A jailed capability is an alias with an empty interface

I Jails can turn any disjunction c1 ⊕ c2 into a conjunction
c1 ⊗ J〈c2〉, which can be split and merged in a non-lossy way

16 / 22



Splitting with Jails

I Cell = Set ⊕ Get∗ means Set and Get∗ may not be used
in parallel

=

= ⊗
Cell

I A jailed capability is an alias with an empty interface

I Jails can turn any disjunction c1 ⊕ c2 into a conjunction
c1 ⊗ J〈c2〉, which can be split and merged in a non-lossy way

16 / 22



Recap

I Capabilities are either exclusive, safe or unsafe

I Traits specify behaviour and introduce capability types.
I Classes introduce composite capability types

I A disjunction c1 ⊕ c2 can be split into either c1 or c2
I A conjunction c1 ⊗ c2 can be split into both c1 and c2 which

may be used in parallel

I Merging can be used to regain composite capabilities in both
structured and unstructured ways

17 / 22



Recap

I Capabilities are either exclusive, safe or unsafe

I Traits specify behaviour and introduce capability types.

I Classes introduce composite capability types

I A disjunction c1 ⊕ c2 can be split into either c1 or c2
I A conjunction c1 ⊗ c2 can be split into both c1 and c2 which

may be used in parallel

I Merging can be used to regain composite capabilities in both
structured and unstructured ways

17 / 22



Recap

I Capabilities are either exclusive, safe or unsafe

I Traits specify behaviour and introduce capability types.
I Classes introduce composite capability types

I A disjunction c1 ⊕ c2 can be split into either c1 or c2
I A conjunction c1 ⊗ c2 can be split into both c1 and c2 which

may be used in parallel

I Merging can be used to regain composite capabilities in both
structured and unstructured ways

17 / 22



Recap

I Capabilities are either exclusive, safe or unsafe

I Traits specify behaviour and introduce capability types.
I Classes introduce composite capability types

I A disjunction c1 ⊕ c2 can be split into either c1 or c2

I A conjunction c1 ⊗ c2 can be split into both c1 and c2 which
may be used in parallel

I Merging can be used to regain composite capabilities in both
structured and unstructured ways

17 / 22



Recap

I Capabilities are either exclusive, safe or unsafe

I Traits specify behaviour and introduce capability types.
I Classes introduce composite capability types

I A disjunction c1 ⊕ c2 can be split into either c1 or c2
I A conjunction c1 ⊗ c2 can be split into both c1 and c2 which

may be used in parallel

I Merging can be used to regain composite capabilities in both
structured and unstructured ways

17 / 22



Recap

I Capabilities are either exclusive, safe or unsafe

I Traits specify behaviour and introduce capability types.
I Classes introduce composite capability types

I A disjunction c1 ⊕ c2 can be split into either c1 or c2
I A conjunction c1 ⊗ c2 can be split into both c1 and c2 which

may be used in parallel

I Merging can be used to regain composite capabilities in both
structured and unstructured ways

17 / 22



Co-encapsulation through nesting
I Parametricity exposes internal details about a nested

capability

class List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉{
provide Link〈T〉 first;

}

=

=List<T> Add<T> Del<T> Nth*<T>⊕ ⊕

or or

List<Pair>

18 / 22



Co-encapsulation through nesting
I Parametricity exposes internal details about a nested

capability

class List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉{
provide Link〈T〉 first;

}

=

=List<T> Add<T> Del<T> Nth*<T>⊕ ⊕

or or

List<Pair>

18 / 22



Co-encapsulation through nesting
I Parametricity exposes internal details about a nested

capability

class List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉{
provide Link〈T〉 first;

}

=

=List<T> Add<T> Del<T> Nth*<T>⊕ ⊕

or or

List<Pair>

18 / 22



Nesting and splitting

List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉
Pair = Cell ⊗ Cell

List<Pair>

Outer split:
Nth*<Pair>

Inner split:
Nth*<Cell> Nth*<Cell>⊗

and

19 / 22



Nesting and splitting

List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉
Pair = Cell ⊗ Cell

List<Pair>

Outer split:
Nth*<Pair>

Inner split:
Nth*<Cell> Nth*<Cell>⊗

and

19 / 22



Nesting and splitting

List〈T〉 = Add〈T〉 ⊕ Del〈T〉 ⊕ Nth∗〈T〉
Pair = Cell ⊗ Cell

List<Pair>

Outer split:
Nth*<Pair>

Inner split:
Nth*<Cell> Nth*<Cell>⊗

and

19 / 22



Composition as abstract memory layout specification

I Cache locality is good! Data accessed together by a single
thread should be on the same cache line

I False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

I Different splitting semantics suggest different access patterns:

c = c1 ⊕ c2 ⇒ c1 and c2 accessed together or separately

Keep c1 and c2’s resources on the same cache line!

c = c1 ⊗ c2 ⇒ c1 and c2 may be accessed in parallel
Keep c1 and c2’s resources on different cache lines!

20 / 22



Composition as abstract memory layout specification

I Cache locality is good! Data accessed together by a single
thread should be on the same cache line

I False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

I Different splitting semantics suggest different access patterns:

c = c1 ⊕ c2 ⇒ c1 and c2 accessed together or separately

Keep c1 and c2’s resources on the same cache line!

c = c1 ⊗ c2 ⇒ c1 and c2 may be accessed in parallel
Keep c1 and c2’s resources on different cache lines!

20 / 22



Composition as abstract memory layout specification

I Cache locality is good! Data accessed together by a single
thread should be on the same cache line

I False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

I Different splitting semantics suggest different access patterns:

c = c1 ⊕ c2 ⇒ c1 and c2 accessed together or separately

Keep c1 and c2’s resources on the same cache line!

c = c1 ⊗ c2 ⇒ c1 and c2 may be accessed in parallel
Keep c1 and c2’s resources on different cache lines!

20 / 22



Composition as abstract memory layout specification

I Cache locality is good! Data accessed together by a single
thread should be on the same cache line

I False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

I Different splitting semantics suggest different access patterns:

c = c1 ⊕ c2 ⇒ c1 and c2 accessed together or separately
Keep c1 and c2’s resources on the same cache line!

c = c1 ⊗ c2 ⇒ c1 and c2 may be accessed in parallel
Keep c1 and c2’s resources on different cache lines!

20 / 22



Composition as abstract memory layout specification

I Cache locality is good! Data accessed together by a single
thread should be on the same cache line

I False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

I Different splitting semantics suggest different access patterns:

c = c1 ⊕ c2 ⇒ c1 and c2 accessed together or separately
Keep c1 and c2’s resources on the same cache line!

c = c1 ⊗ c2 ⇒ c1 and c2 may be accessed in parallel

Keep c1 and c2’s resources on different cache lines!

20 / 22



Composition as abstract memory layout specification

I Cache locality is good! Data accessed together by a single
thread should be on the same cache line

I False sharing is bad! Disjoint data accessed in parallel should
be on separate cache lines

I Different splitting semantics suggest different access patterns:

c = c1 ⊕ c2 ⇒ c1 and c2 accessed together or separately
Keep c1 and c2’s resources on the same cache line!

c = c1 ⊗ c2 ⇒ c1 and c2 may be accessed in parallel
Keep c1 and c2’s resources on different cache lines!

20 / 22



What else?

I Merging non-exclusive capabilities

I Aliasing exclusive capabilities

I Lock-free capabilities

I See paper for more details

21 / 22



What else?

I Merging non-exclusive capabilities

I Aliasing exclusive capabilities

I Lock-free capabilities

I See paper for more details

21 / 22



Summary

I Safe aliasing through capability splitting (and merging)

I Capability composition hints efficient memory layout

I Lock-free capabilities for lock-free data structures

What now?
I Implementation and evaluation

I Extend the support for lock-free data structures

I Add high level abstractions (e.g. Reagents [Turon 12])

Thank you!

22 / 22



Summary

I Safe aliasing through capability splitting (and merging)

I Capability composition hints efficient memory layout

I Lock-free capabilities for lock-free data structures

What now?
I Implementation and evaluation

I Extend the support for lock-free data structures

I Add high level abstractions (e.g. Reagents [Turon 12])

Thank you!

22 / 22



Summary

I Safe aliasing through capability splitting (and merging)

I Capability composition hints efficient memory layout

I Lock-free capabilities for lock-free data structures

What now?
I Implementation and evaluation

I Extend the support for lock-free data structures

I Add high level abstractions (e.g. Reagents [Turon 12])

Thank you!

22 / 22


