
Attached and Detached Closures in Actors

Elias Castegren
Dave Clarke, Kiko Fernandez-Reyes,

Tobias Wrigstad, Albert Mingkun Yang
KTH Royal Institute of

Technology
Uppsala University

What Tobias Said

• The Encore programming language
• Object orientation + actors
• Guarantees safe sharing of objects between actors

• Handling both concurrency and parallelism in the actor model

• Lessons learned & Open questions

!2

This Talk

• State-capturing closures in an actor-setting

• Current and future solutions in Encore

• Terminology for discussing closure semantics

!3

We All Like Actors

!4

We All Like Actors

!5

Some of Us Like Functional Programming

• Functional programming plays nicely with the actor model
• Algebraic data-types
• Immutability
• Higher-order functions
• …

• Examples include Erlang and Elixir

!6

data List a =
 | Nil
 | Cons a (List a)

! x : t.x + 42

Some of Us Also Like Object Orientation

• Actor programming is familiar to OO programmers
• Actors can be thought of as ”active” objects
• Sending Messages ≈ Calling Methods

• OO relies heavily on mutable state and aliasing

⇒Sharing

⇒⇒

!7

Some of Us Also Like Object Orientation

• Actor programming is familiar to OO programmers
• Actors can be thought of as ”active” objects
• Sending Messages ≈ Calling Methods

• OO relies heavily on mutable state and aliasing

⇒Sharing

⇒Data-races

⇒Loss of actor isolation!

!8

Making Actors and OO Play Nice

• Capability-based languages/systems, type systems
• Encore
• Pony [Clebsch et al.]
• LaCasa (for Scala) [Haller & Loiko]
• Joelle [Östlund et al.]

• Relying on delegation of method calls
• e.g. far references in AmbientTalk [Dedecker et al.]

• Relying on copying of (passive) objects
• e.g. Proactive [Caromel et al.]

!9

Encore Primer/Reminder

!10

active class Actor
 var count : int
 val other : Actor

 def work() : unit
 val fut = this.other ! compute()

 val result = get fut
 this.print(result)
 end

 def print(v : Data) : unit
 this.count += 1
 … // Print the value
 end
 …
end

Actors introduced via classes

Message passing

Synchronisation via futures

Capabilities for Concurrency Control

• Every reference carries a capability (tracked by the type system)
• linear — No aliases, transfer semantics
• local — Local to its creating actor
• read — Read-only reference (no mutable aliases)
• active — Actor reference (asynchronous communication)
• …

!11

Capabilities for Concurrency Control

• Every reference carries a capability (tracked by the type system)
• linear — No aliases, transfer semantics
• local — Local to its creating actor
• read — Read-only reference (no mutable aliases)
• active — Actor reference (asynchronous communication)
• …

!11

local class Counter
 var cnt : int
 …
end

linear class List
 var first : Node
 …
end

var c = new Counter
actor ! foo(c)

var l = new List
actor ! bar(consume l)

Can’t share local object

Avoiding Blocking on Futures (Chaining)

!12

active class Actor
 var count : int
 val other : Actor

 def work() : unit
 val fut = this.other ! compute()

 val result = get fut
 this.print(result)
 end

 def print(v : Data) : unit
 this.count += 1
 … // Print the value
 end
 …
end

def work_noblock() : unit
 val fut = this.other ! compute()

 fut ~~>
 fun (v : Data) => this.print(v)
end

Who runs this closure?

Induces waiting times

Who Runs a Closure?

!13

def work_noblock() : unit
 val fut = this.other ! compute()

 fut ~~>
 fun (v : Data) => this.print(v)
end

F
!

Who Runs a Closure?

!14

def work_noblock() : unit
 val fut = this.other ! compute()

 fut ~~>
 fun (v : Data) => this.print(v)
end

F
!

def work_noblock2() : unit
 val fut = this.other ! compute()

 fut ~~>
 fun (v : Data) => this ! print(v)
end

Attached and Detached Closures

• An attached closure is always run by its creating actor
• A detached closure can be run by any actor

!15

!

Attached and Detached Closures

• An attached closure is always run by its creating actor
• A detached closure can be run by any actor

!15

!

Attached and Detached Closures

• An attached closure is always run by its creating actor
• A detached closure can be run by any actor

!15

!

fun (v : Data) => this.print(v)

Closures and Capabilities in Encore

• A closure mirrors the (non-sharable) capabilities it captures

!16

fun (v : Data) => this.print(v) : (Data -> unit)

local

Closures and Capabilities in Encore

• A closure mirrors the (non-sharable) capabilities it captures

!16

fun (v : Data) => this.print(v) : (Data -> unit)local

Closures and Capabilities in Encore

• A closure mirrors the (non-sharable) capabilities it captures

!17

fun (v : Data) => this.print(v) : (Data -> unit)local

fun (v : Data) => this ! print(v) : (Data -> unit)

active

Closures and Capabilities in Encore

• A closure mirrors the (non-sharable) capabilities it captures

!17

fun (v : Data) => this.print(v) : (Data -> unit)local

fun (v : Data) => this ! print(v) : (Data -> unit)active

Closures and Capabilities in Encore

• A closure mirrors the (non-sharable) capabilities it captures

!17

fun (v : Data) => this.print(v) : (Data -> unit)local

fun (v : Data) => this ! print(v) : (Data -> unit)

Labeling Closures as Attached/Detached

!18

def work_noblock() : unit
 val fut = this.other ! compute()

 fut ~~>
 fun (v : Data) => this.print(v)
end

def work_noblock2() : unit
 val fut = this.other ! compute()

 fut ~~>
 fun (v : Data) => this ! print(v)
end

Captures local state:
 must be attached!

Only captures safe state:
 can be detached!

Categorising Closures

• Tetheredness ∈ {attached, detached}

• Execution ∈ {synchronous, asynchronous}
• Sharability ∈ {sharable, unsharable}

!19
Tetheredness

Execution

Sharability

Categorising Closures

!20

Tetheredness Execution Sharability Comment
Attached Synchronous Sharable Explicitly pass back closure to owner
Attached Synchronous Unsharable Current Encore implementation
Attached Asynchronous Sharable Encore, when chaining
Attached Asynchronous Unsharable Delaying operations
Detached Synchronous Sharable Safe ”normal” closures in Encore
Detached Synchronous Unsharable Not useful?
Detached Asynchronous Sharable Task paralellism
Detached Asynchronous Unsharable Not useful?

Categorising Closures

!20

Tetheredness Execution Sharability Comment
Attached Synchronous Sharable Explicitly pass back closure to owner
Attached Synchronous Unsharable Current Encore implementation
Attached Asynchronous Sharable Encore, when chaining
Attached Asynchronous Unsharable Delaying operations
Detached Synchronous Sharable Safe ”normal” closures in Encore
Detached Synchronous Unsharable Not useful?
Detached Asynchronous Sharable Task paralellism
Detached Asynchronous Unsharable Not useful?

fun (v : Data) => v.foo() + 1

fun (v : Data) => this ! print(v)

Categorising Closures

!21

Tetheredness Execution Sharability Comment
Attached Synchronous Sharable Explicitly pass back closure to owner
Attached Synchronous Unsharable Current Encore implementation
Attached Asynchronous Sharable Encore, when chaining
Attached Asynchronous Unsharable Delaying operations
Detached Synchronous Sharable Safe ”normal” closures in Encore
Detached Synchronous Unsharable Not useful?
Detached Asynchronous Sharable Task paralellism
Detached Asynchronous Unsharable Not useful?

fun (v : Data) => this.print(v)

Categorising Closures

!22

Tetheredness Execution Sharability Comment
Attached Synchronous Sharable Explicitly pass back closure to owner
Attached Synchronous Unsharable Current Encore implementation
Attached Asynchronous Sharable Encore, when chaining
Attached Asynchronous Unsharable Delaying operations
Detached Synchronous Sharable Safe ”normal” closures in Encore
Detached Synchronous Unsharable Not useful?
Detached Asynchronous Sharable Task paralellism
Detached Asynchronous Unsharable Not useful?

fut ~~>
 fun (v : Data) => this.print(v)

Categorising Closures

!23

Tetheredness Execution Sharability Comment
Attached Synchronous Sharable Explicitly pass back closure to owner
Attached Synchronous Unsharable Current Encore implementation
Attached Asynchronous Sharable Encore, when chaining
Attached Asynchronous Unsharable Delaying operations
Detached Synchronous Sharable Safe ”normal” closures in Encore
Detached Synchronous Unsharable Not useful?
Detached Asynchronous Sharable Task paralellism
Detached Asynchronous Unsharable Not useful?

async (x.foo())

Categorising Closures

!24

Tetheredness Execution Sharability Comment
Attached Synchronous Sharable Explicitly pass back closure to owner
Attached Synchronous Unsharable Current Encore implementation
Attached Asynchronous Sharable Encore, when chaining
Attached Asynchronous Unsharable Delaying operations
Detached Synchronous Sharable Safe ”normal” closures in Encore
Detached Synchronous Unsharable Not useful?
Detached Asynchronous Sharable Task paralellism
Detached Asynchronous Unsharable Not useful?

Categorising Closures

!25

Tetheredness Execution Sharability Comment
Attached Synchronous Sharable Explicitly pass back closure to owner
Attached Synchronous Unsharable Current Encore implementation
Attached Asynchronous Sharable Encore, when chaining
Attached Asynchronous Unsharable Delaying operations
Detached Synchronous Sharable Safe ”normal” closures in Encore
Detached Synchronous Unsharable Not useful?
Detached Asynchronous Sharable Task paralellism
Detached Asynchronous Unsharable Not useful?

Related Work (closures)

!26

Scala/Akka All closures detached, synchronous and sharable (unsafe)

Pony Synchronous, detached/sharable or attached/unsharable

AmbientTalk All closures attached, far references are asynchronous

ProActive Attached, synchronous and sharable (deep copy)

Erlang No mutable state

ABS No closures (functions passed by name)

Open Questions

• Sharing attached closures

• Deadlocking on attached closures

• Reasoning about timing and scheduling

!27

def run(fn : int -> int) : int
 fn(42)
end

def deadlock(a : Actor) : unit
 var fut = a ! msg() ~~> fun(v) => …
 var value = get fut
end

Open Questions

• Sharing attached closures

• Deadlocking on attached closures

• Reasoning about timing and scheduling

!27

def run(fn : int -> int) : int
 fn(42)
end

def deadlock(a : Actor) : unit
 var fut = a ! msg() ~~> fun(v) => …
 var value = get fut
end

active

Open Questions

• Sharing attached closures

• Deadlocking on attached closures

• Reasoning about timing and scheduling

!28

def run(fn : int -> int) : int
 fn(42)
end

def deadlock(a : Actor) : unit
 var fut = a ! msg() ~~> fun(v) => …
 var value = get fut
end

active

def nondeterministic(a : Actor) : unit
 val oldCount = this.count
 var fut = a ! msg()

 fut ~~>
 fun (v : Data) => this.count += 1

 if oldCount == this.count then
 …
 end
end

Conclusion

• Closures capturing state can be made to play nicely with actors
• Attached closures must be run by their creating actor
• Detached closures can be run by anyone
• Some closures must be run asynchronously

• Encore’s existing type system can express both kinds of closures

• More work needed to reason about runtime behaviour

!29

Attached and Detached Closures in Actors

Thank you!

Attached and Detached Closures in Actors

!31

Tetheredness Execution Sharability Comment

Attached Synchronous Sharable Explicitly pass back closure to owner

Attached Synchronous Unsharable Current Encore implementation

Attached Asynchronous Sharable Encore, when chaining

Attached Asynchronous Unsharable Delaying operations

Detached Synchronous Sharable Safe ”normal” closures in Encore

Detached Synchronous Unsharable Not useful?

Detached Asynchronous Sharable Task paralellism

Detached Asynchronous Unsharable Not useful?

Capturing Linear Capabilities

!32

var x = new LinearThing()
var f = fun () => x
var x1 = f()
var x2 = f()

var x = new LinearThing()
var f = fun () => x.foo()
async f()
async f()

var x = new LinearThing()
var a = new Actor()
var f = fun () => a ! send(x)
f()
f()

Bestowed References (Far References)

!33

Bestowed References (Far References)

!34

Bestowed References (Far References)

!34

x ! foo()

Bestowed References (Far References)

!34

λ _ . x.foo() x ! foo()

Await and Continuations

!35

def foo(a : Actor) : unit
 var fut = a ! compute()
 var result = await fut
 this.print(result)
end

def foo(a : Actor) : unit
 var fut = a ! compute()
 fut ~~>
 fun (result : Data) => this.print(result)
end

