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Abstract

Implementing Safe Sharing Features for Encore

Joel Wallin

Actor isolation is an important property in parallel and concurrent 
programs that utilize the actor model. However, when expressing 
certain patterns isolation can sometimes be too strong and forces 
complexity on actors. To address this problem, two new language 
constructs have been introduced: Bestow allows an actor to delegate a 
part of its interface to its internal objects; Atomic enables 
grouping of messages which requires them to be handled in sequence. 
This thesis discusses several valid designs which are compared in the 
context of an object-oriented and actor based language called Encore. 
Bestow and atomic have proven to simplify several patterns and to 
minimize the complexity of actors by decoupling classes and allowing 
for granular interfaces. This additional abstraction comes with some 
overhead at run-time which there is plenty of room for reducing in 
future work. Equipped with these new tools a programmer can simplify 
complex concurrency patterns, allowing them to focus on the main task 
at hand.
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1 INTRODUCTION 1.1 Goal and Purpose

1 Introduction

The ever ongoing race for more computing power has lead to the inception and
exploration of parallel programming [1]. The inevitable problem that parallel
systems have to solve is how to synchronize when multiple entities want to
access the same data. Languages in use today were often originally designed
to be sequential, without parallel execution in mind [1, 2], thus requiring the
programmer to identify where synchronization is needed. This is not an easy task
as deadlocks and data races can be incredibly difficult to detect. A programmer
who is too liberal with synchronization also risks creating bottle-necks that could
seriously decrease the performance gain of parallel execution [1, 2].

With a high level of abstraction the programmer is able to more easily focus on
solving the problem at hand. The actor model is a style of programming that
employs this philosophy by isolating data within actors [3]. The result is total
data race freedom, as only the actor itself can directly access and modify its
internal state. However, there are situations where isolation is too restrictive to
express certain patterns, leading to an inefficient implementation [4, 5]. Although
additional abstraction may come with increased run-time, it could be worth it if
patterns can be simplified.

Aliasing is a powerful tool in imperative languages, but is dangerous in a parallel
setting. A more nuanced approach for actor-based languages is to extend an
actor’s interface by enabling it to expose its internal objects and implicitly
require that any interaction still goes via the actor [4]. External entities can
then be allowed to access the actor’s internal structure while still guaranteeing
synchronization. An external entity may also specify a sequence of operations
to be performed on an internal object or actor without any interleaving. This
thesis explores these two concepts including their design, implementation, and
real world applications.

1.1 Goal and Purpose

The goal of this project is to implement two language constructs in an actor-based
and object-oriented language called Encore [6]. These constructs enable safe
interaction with another actor’s internal objects and non-interleaved operations.
There are two main challenges when extending a compiler with new language
constructs. First, the solution is going to need functionality that is not present
in the compiler. Second, integrating the solution into the rest of the language
seamlessly by having it coupled as loosely as possible with other unrelated parts
of the compiler. The purpose of implementing these two constructs is to evaluate
whether they are useful in an actor-based language. While proven sound, they
have not yet been proven useful.
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2 BACKGROUND 2.1 The Actor Model

1.2 Outline

The general structure of this thesis is as follows: First is an introduction to the
actor model and Encore, followed by common methods for sharing data in a
concurrent setting. The next item on the list is a more intricate description of the
problem of sharing data in an actor-based language. After that, the design aspects
of the constructs and their implementation into Encore are presented. Finally,
the evaluation is done by finding patterns where the constructs can be used in
a set of predefined benchmarks. Both the expressive power and performance
aspects of the constructs are explored in the evaluation.

2 Background

2.1 The Actor Model

In recent years increasing clock speed of processors by adding more and smaller
transistors has become increasingly difficult. Most modern systems instead utilize
multi-core processors [1]. To harness this added computing power, software
needs to actively use the available cores. Most programming languages were not
designed with parallel execution in mind and can only utilize multiple cores by
explicitly creating new threads or processes. Methods that achieve this passively
have been explored, such as the actor model [3].

Since its introduction in 1973, the actor model has been relevant and influential
in both research and industry [1, 3, 7]. It is a model for concurrency where
actors are isolated entities which communicate with each other asynchronously
in order to minimize common concurrency issues such as deadlocks and data
races. Before delving into specifics, a common set of terminology must first be
established:

Message: The unit of communication between different actors are messages.
A message is a tuple of an identifier which defines the message’s type and an
optional payload that contains data.

Mailbox, aka. Message Queue: The messages that an actor receives are
stored in its mailbox.

Interface: The types of messages that an actor understands and can process
are defined by its interface. Passive objects can also have their own interface,
which usually only their owner can directly interact with.

State: An actor’s state is the data that is stored inside the actor, and which
can be accessed synchronously by that actor alone.

Passive Object: Objects that are not actors are passive objects. Depending
on the implementation, a passive object may be mutable or immutable, and
isolated or shared between actors.
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2 BACKGROUND 2.2 Encore

Actor, aka. Active Object: An actor can be defined as a three-tuple of
its mailbox, interface, and state. Actors handle messages from its mailbox
which are filtered through its interface. An actor may also interact with its
own state and respond to other actor’s messages.

Figure 1: The actor model visualized.

There exists many variations of the actor model which are implemented in a
wide array of languages and libraries [3]. These can be broken down into four
distinct categories: The Classic Actor Model, Processes, Active Objects, and
Communicating Event-Loops [3]. In this thesis the two latter categories are of
interest.

Active Objects (AO) takes advantage of object-oriented design and applies it to
the actor model [3]. Actors are called active objects and normal local objects are
called passive objects. The interface of active objects are its methods, just like
in any other object-oriented setting. Communicating Event-Loops (CEL) has a
wider definition of actors: Each actor contains a heap with a set of objects and a
single thread of execution, where the interface of any object in the actor’s heap
can be used as the actor’s interface [3]. Two examples of such languages are E
and AmbientTalk [3, 8].

The interface and isolation properties of actors are the two main areas of interest
in this thesis. Systems using AO and CEL handle these a bit differently:

Interface: As described earlier, any object in an actor’s heap can be used as
an interface to the actor in CEL, while the methods of actors are the only
valid interface in AO.

Isolation: When the state of an actor is only directly accessible and can be
modified by the actor itself, then the actor’s state is considered to be isolated.
This is not always guaranteed in some actor-based languages, but usually
both AO and CEL languages have this guarantee.

2.2 Encore

Encore is a general purpose object-oriented language which achieves parallelism
mainly through the actor model [6], and can be categorized to be in the AO

3



2 BACKGROUND 2.2 Encore

subset. Its compiler is written in Haskell and translates Encore code to C code
which is then compiled by a C compiler. As of the writing of this thesis, Encore
is open-source1 and details about its current syntax, capabilities, and features
can be found in its documentation2. While the language contains many features,
this section focuses on a few core properties.

active class Main
def main () : unit

println ("Hello World!")
end

end

def loop(n : int) : unit
var numLoops = 0
while ( numLoops < n) do

numLoops += 1
end

end

Listing 1: Encore Hello World program and a loop method.

Like other actor based languages which use active objects, Encore’s objects can
either be active or a subclass of passive objects [6, 9]. Message sends may return
future values which makes the act of sending messages asynchronous [6]. Future
values serve as containers where the result of the computation will be stored
eventually. An actor is thus not blocked after sending a message. Retrieving the
result is however blocking if the result has yet to be computed.

Passive objects are the building blocks of active objects. They have reference
semantics and are only supposed to be handled by a single actor at a time.
Because reference semantics are supported it is still possible for an inexperienced
(or malicious) programmer to write a program with data races. In Encore
this problem is addressed with a type system called Kappa [9] that enforces
synchronization and data race freedom, unless the programmer actively takes
steps to get around Kappa by using the unsafe tag.

Encore’s syntax has a mix of imperative, functional, and object-oriented flavour.
A message send is performed with the ! bang operator, while for synchronous
method calls on passive objects the standard . dot operator is used. The future
returned by a message send can be used as an argument for the get operation
which retrieves the result from a future.

Defining whether an object is active or passive is done in its class definition. The
active keyword is used for active objects and there are a plethora of keywords
for different flavours of passive objects. For example local, which requires that
the object is local to a single actor and thus cannot be shared between actors.
There are also tags such as sharable for objects that can be shared between
actors.

Encore also features polymorphism, and another important concept called traits
which in Encore corresponds to abstract classes and interfaces. Lastly, there is

1https://github.com/parapluu/encore
2https://www.gitbook.com/book/stw/the-encore-programming-language/details
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2 BACKGROUND 2.3 Sharing Data in Concurrent Programs

also support for closures which are similar to anonymous functions. The main
difference is that an anonymous function is just a function with no name, while a
closure also captures the state of the surrounding environment.

2.3 Sharing Data in Concurrent Programs

In imperative programming languages like C, C++ and Java, access to shared
data is synchronized with mutex locks or semaphores [1, 2]. This needs to be
done in order to avoid race conditions that can otherwise occur. Locks and
semaphores do however come with additional overhead, as threads might need
to wait for a resource to become available. This overhead does not scale well as
more threads wants to use the same resource. The easiest way to reduce these
negative effects is to write code that requires as little synchronization as possible
[2]. It is however not always feasible and becomes increasingly difficult to avoid
as programs become larger and more complex [2, 3, 7].

Some languages, like Java for example, support exclusive execution with the
synchronize keyword, which ensure that only one thread can execute a given
block of code at a time. In languages without similar features however, support for
non-interleaved operations on data needs to be implemented by the programmer.
Most commonly it is accomplished through locks or by making asynchronous
operations synchronous [1, 2, 3].

An approach coming from the database world is the idea of transactions [10].
Where each operation must either complete in its entirety or have no effect in
the system. Software transactional memory (STM) is one implementation that
provide this functionality, where instead of lock-based synchronization, operations
are allowed to execute in parallel [10]. Each memory access is monitored so that
if a conflict which would lead to a data race is detected, it will cause one of the
operations to abort and rollback to the beginning of the operation which will
then be restarted. To the programmer and the system it will be as if no conflict
had ever happened.

Actor-based programming languages like Erlang and Scala tries to solve both the
synchronization and scaling problem with the actor model. In Erlang everything
is immutable and sharing data is done by performing a deep copy of an object
and sending that in a message to another actor [3]. Scala supports both mutable
and immutable data, and the same pattern for sharing data in Erlang is possible
in Scala, but immutable data does not need to be copied. A common pattern
in both Erlang and Scala is to have one actor host the mutable data and have
other actors send messages to retrieve and update it [3]. Transferring ownership
is another alternative if both actors do not need to access the resource at the
same time [1, 3, 6].

In Encore, an actor can not directly access an internal object of another actor,
the actor must instead use the interface of the object’s owner. Expressing
certain patterns can thus be difficult due to the isolation property of actor-based
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3 PROBLEM DESCRIPTION 3.1 Motivation: Breaking Isolation

languages. Conventional methods described in this section could simplify these
patterns to some degree, but a method more intimately tailored to the actor
model is desired.

3 Problem Description

When an actor wants to interact with the internal objects of another target actor,
it must go through the target’s interface. To enable this interaction, the target
actor must also extend its interface with methods that interact with its internal
objects. The problem with this is that the target actor gets coupled with its
internal objects and its interface gets bloated. By safely breaking isolation both
of these problems can be solved.

3.1 Motivation: Breaking Isolation

Aliasing is widely used in imperative languages. Partly because aliasing is often
a more efficient way to share data than copying, and in an object-oriented setting
the programmer can directly interact with the shared object’s interface, rather
than going through the owner’s interface. Sharing data in a parallel setting is
however not always safe if the data is modified via aliasing, as this could expose
the program to data races if there is no synchronization mechanism.

Listing 2 shows a list and iterator implementation in Encore, for simplicity the
exact implementation of some methods are omitted and active objects are allowed
to return values instead of futures. There are two problems with this program,
disregarding that it is not a legal Encore program. Firstly, this implementation
breaks encapsulation by having the iterator alias a node in the list without having
to go through the list actor’s interface. Secondly, there is no guarantee that
the list is not changed between the client’s method calls. When the client calls
hasNext the result might be True, but the list could change between the hasNext
and getNext calls.

A non-interleaved version of hasNext and getNext is needed to guarantee that
the list cannot change between methods calls. This could be implemented in the
list actor as a single method, although encapsulation would still be violated as a
node in the list is still being aliased in the iterator. Integrating the iterator into
the list actor’s interface is another option, although this strongly couples the two
classes. An iterator trait could also be considered in order to implement iterator
functionality. However, both the trait and integrating the iterator into the list
interface has the same problem that only one actor can iterate through a list at
a time. If multiple actors want to iterate over the same list, the list would need
to map different iterators to different actors.

Efficiently implementing this list and iterator pattern is challenging in Encore.
By introducing new constructs that safely break isolation, the implementation of

6



3 PROBLEM DESCRIPTION 3.1 Motivation: Breaking Isolation

this pattern can be simplified. A bestowed object is a safe reference to a passive
object which can be shared between any number of actors, enabling another actor
to safely interact with the passive object’s interface without the risk of data races.
An atomic block forces the target actor of the block to handle the messages sent
to it within the block in sequence without interleaving for other messages.

With these tools, the synchronization, interleaving, and bloated interface problem
can be solved. The list actor now instead creates a Bestowed object containing a
local Iter to decouple the list and iterator interfaces, and uses an atomic block
for non-interleaving. Listing 3 shows a safe version with both of these properties –
getIter now returns a Bestowed object and an atomic block which operates on
iter makes sure that only the client can modify the list object when performing
operations within that block.

local class Node[t]
var elem : t
var next : Node[t]

end

active class List[t]
var head : Node[t]
def iter (): Iterator

end

local class Iterator
var curr : Node[t]
def getNext () : t
def hasNext () : bool

end

active class Client
var list : List[int]

def iterate () : unit
val iter = list ! iter ()
while (iter ! hasNext ())

val e = iter ! getNext ()
transmogrify (e)

end
end

end

Listing 2: A list and iterator, some method implementations are omitted.

active class List[t]
var head : Node[t]

-- Iter == Iterator
def iter () : Bestowed [Iter]

end

def iterate () : unit
val iter = list ! iter ()
atomic iter

while (iter ! hasNext ())
val e = iter ! getNext ()
transmogrify (e)

end
end

end

Listing 3: data race free and non-interleaved iterator, Iter is the same as the
Iterator class.

7



4 DESIGN 4.1 Bestow

4 Design

The language constructs bestow and atomic make it possible to interact with
internal objects of an actor while still guaranteeing that every operation is
synchronized. They originate from Castegren and Wrigstad [4], who describe a
use case similar to the one in Section 3.1, and define semantics for the constructs.
The design of the constructs take advantage of functionality that is already
present in the Encore compiler and tries to minimize additions to the run-time.
This is because a solution generated by the compiler is more resilient to future
changes in the run-time, than a run-time implementation is.

4.1 Bestow

The bestow operation lets an actor create a safe reference of one of its passive
objects called a bestowed object. Isolation prohibits another actor from accessing
an internal object of another actor, and bestowed objects are a thread safe way
to break isolation. Figure 2 illustrates this, an actor tries to interact with the
internal foo object of another actor, this interaction is possible by bestowing foo.
A bestowed object looks and acts like an actor, and every message sent to it is
relayed to its owner. This guarantees that every operation is synchronized, and
enables a bestowed object to be shared between any number of actors without
the risk of data races. There are two relevant entities of bestowed objects:

Bestowed Target: The passive object that is the target of bestow.

Bestowed Owner: The actor that performs bestow and carries out all of
the operations on the bestowed target.

Figure 2: An actor can interact with the internal foo object of another actor by
having its owner bestow it.

Requiring that every operation on a bestowed object is synchronized with the
owner is not the same as aliasing an object like in an imperative language. This
is because we can only interact with the bestowed target’s interface and its state
is inaccessible (private), but in an imperative setting the aliased object’s state
may not be inaccessible. One could argue that this forced isolation promotes

8



4 DESIGN 4.1 Bestow

better coding conventions by disallowing patterns that could break encapsulation
and couple classes.

4.1.1 Thread Safe Bestowed Objects

A bestowed object has the same interface as the bestowed target, and any
interaction with it is asynchronous. This makes a bestowed object analogous to
an active object, hence message sends instead of method calls should be used
for interaction. Because not all passive objects are bestowed objects like in CEL
languages, there should also be a tag on those objects. A new type for bestowed
objects could be used for this purpose.

The bestowed type tracks whether an object is bestowed. This is used in the
compiler to typecheck message sends on bestowed objects and to translate certain
operations on bestowed objects into different ones. The bestowed type is also
visible to the programmer, which makes it possible to determine whether or not
an object is bestowed.

Not all Encore objects can be bestowed. Active objects already have a built-in
synchronization mechanism and the bestow construct is therefore not needed for
those objects. To adhere to the constraints posed by the Kappa typesystem in
Encore, some subclasses of passive objects are also disallowed. One such subclass
are linear objects, they are guaranteed to only have one reference existing
in the entire program and allowing a linear object to be bestowed breaks that
contract.

At run-time a physical representation of bestowed objects is needed so the compiler
can generate code to interact with them. A bestow class in the standard library
is a flexible option because its run-time representation will be generated by the
compiler. Listing 4 is an example implementation. An unsafe class has no safety
mechanisms in the Kappa type system, which allows us to share this object
between multiple actors without any complaints from the compiler. Ideally the
target and owner fields would also be private so that they are not accessible
by the programmer (this is not yet possible to do in Encore). The owner has
the Actor object type which is actually a trait, this will be explained in Section
4.1.2. Implementing bestowed objects directly in the run-time is also a viable
option.

So how is the bestow class a safe reference that can be used to synchronize with
the owner? Assuming that its fields are private, the compiler can extract the
target and the owner, and redirect operations on the bestowed object to the owner.
A bestowed object cannot be modified by an actor as its state is not accessible,
making it immutable. Any number of actors can thus simultaneously interact with
the same bestowed object without having to worry about synchronization.

9



4 DESIGN 4.1 Bestow

unsafe class Bestow [ unsafe t]
private val target : t
private val owner : Actor

def init( target : t, owner : Actor) : unit
this. target = target
this.owner = owner

end
end

Listing 4: An implementation of the bestow class.

4.1.2 Synchronization

With the bestowed type and the bestow class there is an interface for the
compiler to extract the bestowed owner and target. Operations performed on the
bestowed object can be any valid method in its interface, and the mechanism for
synchronizing these operations with the owner rely on closures (Figure 3).

Figure 3: Closures are used to relay messages to the owner.

If the semantics of communicating with a bestowed object are identical to an
active object, then when someone performs a message send on a bestowed object,
it needs to be able to tell the owner to call that method on the target. The
target might not necessarily be a member of the owner, as it might just have
been created within that context. Therefore the owner might not have a reference
to the object. To support both of these cases, the expression could be wrapped
inside of a closure and sent to the owner to execute. Closures are convenient in
Encore as the variables it interacts with from its current environment are copied
into the closure’s environment. Thus a local variable can be used inside of a
closure, but cannot be reassigned.

To enable the bestowed target to run a generic closure, a new message type in
its mailbox can be added in the run-time. This message has a closure as its
payload, and when it is handled by the actor it will extract the closure and run
it. Enabling this functionality globally is unsafe, as it might break the isolation
property of actors or risk that a malicious programmer runs compromising code
inside an actor (Listing 5).

10



4 DESIGN 4.1 Bestow

def malicious_example (actor : active ) : unit
val closure = λ _ {while true do

println (42)
end}

actor ! run_closure ( closure )
end

Listing 5: Making an actor run an infinite loop.

Another alternative is to add the Actor trait in Listing 6, which includes a
method for running an arbitrary closure. An active class which wants to use
bestow can be extended with this trait. The trait is also active, which means that
only active classes can be extended with the trait. The new perform method is
polymorphic and takes a closure as an argument which returns a sharable type
t. Sharable types are types that are allowed to be shared between actors in the
Kappa type system.

active trait Actor
def perform [ sharable t](f : () -> t) : t

f()
end

end

Listing 6: An implementation of the Actor trait.

The trait design does not enable global support for running generic closures, but it
restricts it by requiring the Actor trait. Programmers could still implement this
trait themselves if they wanted to, so restricting the running of generic closures
by requiring the Actor trait is not as intrusive as global support. Restricting
the running of generic closures further is possible by making the Actor trait
inaccessible to the programmer and have the compiler add it to any active class
that uses bestow.

A small overhead is introduced by using the trait design when compared to the
run-time implementation, as code for the perform method would need to be
generated for every class that is extended with the trait. The main advantage
with the trait over the run-time implementation, is that it is more future proof
due to resilience of changes in the run-time.

Bestowed objects are safe to share between any number of actors, and with the
Actor trait actors can also run generic closure. There is now a synchronization
mechanism between bestowed objects and their owner, allowing an actor to safely
interact with the internals of another actor.

11



4 DESIGN 4.2 Atomic

4.2 Atomic

The atomic construct lets an actor specify a sequence of messages that need to
be handled by another actor without interleaving for other messages. Atomic
also allows intermediate results from these messages to be handled. The atomic
construct is not necessarily tied with the bestow construct and can be used in
other situations when performing multiple asynchronous operations which needs
to not be interleaved.

Atomic is a block-expression which operates on a single actor, there are two
primary parts of the atomic construct:

Atomic Target: The active object that is the target of the atomic block. It
is this actor that has to handle the messages in sequence without interleaving
for other messages.

Atomic Body: The operations within the atomic block.

Figure 4: Actors only have one mailbox, atomic provides exclusive access.

Atomic gives an actor atomic (exclusive) access to another actor. In Figure 4, foo
has atomic access and the messages from bar can thus not be handled before foo
is finished running its atomic block. Unlike bestow, there are no problems with
any internal state that arises from this as both of the actors are still isolated from
each other. The main problem to solve is how to achieve exclusive access for one
specific actor and still allow other actors to send messages to its mailbox.

Enforcing non-interleaving of atomic messages can be accomplished in a mul-
titude of ways, and two different designs are discusses in this thesis. The first
design groups messages together into a single message using closures, and the
second design utilizes multiple mailboxes to sort atomic messages from other
messages. These designs have different semantics, but enforces non-interleaving
nonetheless.

4.2.1 Semantics

An important question to address, is whether to make atomic a blocking operation
or not. Both alternatives are valid but lead to slightly different functionality.
Depending on which option is chosen, message sends inside the atomic body
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performed on the target can be converted from asynchronous message sends to
synchronous method calls.

If atomic is blocking, message sends can be translated to method calls and there
would thus be no need for using get to retrieve a value from a future. Using
method call syntax instead of message send syntax is then a valid option. It
would also be worth considering whether to disallow results from message sends
on the atomic target to be used as the argument of expressions that operate on
futures.

If atomic is not blocking however, then every message send on the atomic target
would still need to be a message send. The semantics for operations inside the
atomic block would thus be identical to the rest of the language (except for the
exclusive access to the atomic target).

4.2.2 Enforcing Non-Interleaving

The messages sent to the atomic target needs to be handled without interleaving
for other messages. The atomic target could be bombarded by messages from
other actors, but it still needs to guarantee that atomic messages are handled
first. The two main options that have been considered for enabling this are as
follows:

Atomic Closure: Wrap the atomic body inside of a single closure, which can
then be sent to and run by the atomic target. Effectively grouping multiple
messages into one.

Atomic Mailbox: Actors can switch which mailbox it reads messages from.
Allowing actors that want atomic access to exclusively write to a shared
mailbox, while other actors still write to the old mailbox.

Figure 5: Atomic closure on the left, and atomic mailbox on the right.

Atomic Closure bundles the whole body of the atomic block into a single
message by wrapping it inside of a closure (Figure 5). The Actor trait from
Listing 6 can be utilized to enable the atomic target to run a generic closure.
This allows a programmer to interact with intermediate values inside the atomic
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body, but requires that atomic is a blocking operation if data declared outside the
atomic body is to be mutable without any race conditions. This is because the
closure will be run by the atomic target, and if the other actor with atomic access
continues beyond its atomic block, then both actors could access and modify the
same object at the same time. To eliminate this race condition, atomic closure
thus has to be blocking. The blocking nature of atomic closure also leads to a
new scenario where deadlocks can occur. This scenario is when the actor with
atomic access and the atomic target are blocking on each other at the same time.
Although, this scenario is fairly obvious if a programmer knows that atomic is a
blocking operation.

Atomic Mailbox gives an actor atomic access by putting atomic messages in
their own message queue (Figure 5). To enable the use of multiple message queues,
two new pointers to message queues called read and write are introduced (Figure
6). All messages sent to the actor are placed where write points to, and the
actor itself reads messages from wherever read points to. When not in an atomic
block, both read and write will point to the Default message queue like the
two left most actors in Figure 6. But whenever an atomic block is entered, a new
message queue called Atomic is created, and the target of the atomic block is sent
a message to switch so that its read pointer points to the Atomic message queue.
This can be seen in the two right most actors in Figure 6. Any message sent
to the atomic target is still sent to wherever write points. But the actor with
atomic access has exclusive access to the Atomic message queue and thus to the
atomic target. When the body of the atomic block has finished running, another
message is sent to the target to switch back so that read points to the Default
message queue again. This design does not require that atomic is a blocking
operation and its semantics are identical to those described by Castegren and
Wrigstad [4].

Figure 6: The read and write pointers of atomic mailbox.

With the atomic closure design there is opportunity for performance optimizations
by translating certain asynchronous message sends to synchronous method calls.
The main disadvantage is that the atomic block has to be a blocking operation
and that closures would need to be extended in order to allow for mutation of
local data declared outside of the atomic block.

Although the atomic mailbox design requires modification of the actor implemen-
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tation in the run-time, the semantics are much clearer and there are fewer risks
of deadlocking as atomic would not have to be a blocking operation. It is also
less complex conceptually for a programmer, as the only semantic difference is
exclusive access to the atomic target.

Both atomic closure and atomic mailbox have been partially implemented as
they are interesting to contrast with each other in practice.

4.2.3 Message Sends

All message sends on the atomic target needs to be sent to the correct queue.
But detecting that a message send is performed on an atomic target is not always
straightforward. Consider the example in Listing 7. Two message sends on the
atomic target are performed outside of the body in two functions. Logically these
operations are inside of the atomic body and should thus be sent to the atomic
message queue.

The scope of the atomic block could be limited to make code like in Listing 7 not
valid atomic message sends. Or the scope could be encompass the whole actor.
There are three options for this problem:

Lexical Scope: An atomic block only affects statements that are in its
immediate lexical scope.

Actor Wide: An atomic block affects all statements in the current actor
that are executed between its start and finish.

Atomic Handle: An atomic block gives an additional handle to an actor
and only operations on the handle are affected.

atomic this.a
this.foo ()
this.bar(this.a)

end

def foo () : unit
this.a ! baz ()

end

def bar(a : active ) : unit
a ! baz ()

end

Listing 7: Atomic target used outside of the atomic body. What scope does atomic
operations have?

Relating to Listing 7, under lexical scope neither of the message sends will be
atomic, under actor wide all of the message sends will be atomic, and under
atomic handle only bar will be atomic.

Lexical Scope puts unnecessary constraints on valid atomic messages. And
it can lead to messy code if every atomic message send has to be concentrated
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directly inside of the atomic block. Its strength is that it is simple to implement
and for a programmer to understand.

Actor Wide allows for more flexible code by widening the scope of atomic
operations to encompass the entire actor. However, it is a bit more complex
conceptually for the programmer to understand and implementing actor wide
is neither straightforward. One implementation is to search the arguments and
bodies of all message sends and method calls inside the atomic block in order to
identify every atomic operation. Another implementation is to save all atomic
targets in some data structure in the actor with atomic access, and perform a
check during every message send if the target is atomic. Both of these options
are quite difficult to implement efficiently.

Atomic Handle makes it clear for the programmer that they are interacting
with an atomic target and the compiler can statically check if a message send is
performed on an atomic target. Atomic handle is about as flexible as actor wide,
but require that the programmer passes the atomic handle as an argument to
any method that wants to perform an atomic operation.

The choice for this implementation of atomic would have been atomic handle, as
it is easier to implement efficiently than actor wide and code is still easy to reason
about. But due to time constraints, lexical scope has been implemented.

5 Implementation

The Encore compiler is written in Haskell and generates C code which is compiled
to an executable by a C compiler and linked with a run-time written in C. There
are five distinct steps in the Encore compiler which are performed in the following
order:

1. Parser: The Encore input files are parsed and then an abstract syntax
tree (AST) is created.

2. Desugarer: Replaces an AST node with a different one, for example, a
for loop may be rewritten as a while loop.

3. Typechecker: Annotates all the types of every expression and checks that
they have the correct type. It both catches and eliminates execution errors
during compilation that can otherwise occur during run-time.

4. Optimizer: The second desugaring phase with type information.

5. Code Generation: Translates the annotated AST into C code.

In the generated C code there are a few interesting things to note. Actors
have a message queue in the run-time where all messages sent to it are put.
When these messages are eventually handled by an actor, they are filtered
through its dispatcher, the C interface of an actor. Here all of its methods
and necessary language constructs are represented. Another point of interest
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is closures, which are static functions (Listing 8) that have an environment (C
struct) which is dynamically created whenever a closure is run. This means that
a new environment needs to be created for every closure call.

To implement the bestow and atomic language constructs in Encore, the compiler
has to be extended in all its different parts. For bestow and atomic there already
is support for closures in Encore which can be utilized. Bestow can thus mostly
rely on functionality that is already in the compiler. Atomic on the other hand
needs to be able to switch between mailboxes and allow for closure mutability,
which are new concepts in the language.

Adding functionality in the Parser and new nodes in the AST is straightforward,
as both bestow and atomic are orthogonal to everything else in the Parser and
AST, meaning that there are no conflicts to resolve. The rest of the stages in the
compiler are more interesting however.

// the environment
struct env_closure
{

int i;
};

// the closure , only showing the relevant argument
int closure ( struct env_closure * env)
{

// extract variables out of the environment
int i = env ->i;
// the body of the closure
return i;

}

Listing 8: Simplification of the generated code for a closure. This closure returns
the value of an integer variable.

5.1 Bestow

Bestow enables an actor to safely interact with the interface of an internal object
of another actor, this is a different pattern than having to go through an actor’s
interface in order to interact with its internal objects. The implementation outline
of bestow is to add parsing, a new AST node, a new type called Bestowed, and
perform necessary typechecking on the argument of the bestow expression. The
bestow expression and performing a message send on a bestowed object will also
be desugared in the Optimizer.
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5.1.1 Typechecking

Remember that the building blocks of active objects are built with the passive
subclasses. As discussed in Section 4.1.1, some subclasses are not valid targets for
bestow. Checking that these conditions are satisfied is done by confirming that
the target expression is a passive object which is either local or subord.

The bestowed construct can in the current implementation only be used by an
active object. It does not make sense to limit so that actors only can use the
bestow construct, as this makes it difficult for separate libraries to use bestow.
Allowing passive objects to use bestow is a fairly trivial change that just require
that the bestowed owner is assigned differently by the generated C code. The
owner must also include the Actor trait, otherwise it is not possible to send a
generic closure to the owner via the perform method.

An operation on a bestowed object must be well-typed. For example, the method
called with a message send on a bestowed object must also exist and match the
definition in the target’s interface. The typechecking for such an expression is
therefore done by checking the well-typedness in relation to the target. This is
important also for generating good error messages in the compiler, like when the
wrong number of arguments are used.

With the constraints posed by their design, bestowed objects behave almost
semantically the same as active objects. But in order to allow the use of the
message send syntax on bestowed objects they need to be defined as active objects
in the type system. This circumvents having to implement a special case for
message sends on bestowed types by simply extending the definition of active
objects.

5.1.2 Optimizer

Simply extending the definition of active objects to include bestowed objects only
solves the typechecking part of a bestowed expression. The compiler still has
no idea what a message send on a bestowed object is supposed to be translated
into. In the Optimizer it is possible to desugar any part of the AST. There are
two types of expressions that need to be desugared, both of which can be seen in
Listing 9.

1 val obj = bestow target
2 obj ! foo ()

Listing 9: Bestow expressions which need to be desugared.

The first item in Listing 9 is where a bestowed object is created, it needs to be
desugared into creating a new Bestow object (from Listing 4) and the type of the
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expression is set to Bestowed. The second item needs to transform the message
send to a method call and apply it on the bestowed target. This method call
then has to be wrapped inside of a closure which is used as an argument of a
message send with the perform method of the owner.

The desugared versions of the two expressions can be seen in Listing 10, where
the left hand side corresponds to the first item and the right side the second
item in Listing 9. Note that for every message send a new closure environment
(Listing 8) is created, which has to be allocated on the heap, have its members
assigned, and eventually be garbage collected.

-- 1. desugared to:
new Bestow (target , this)

-- 2. desugared to:
val target = obj. target
val owner = obj.owner
val closure = λ _ target .foo ()
owner ! perform ( closure )

Listing 10: Desugaring the two bestow expressions in the Optimizer.

5.1.3 Garbage Collection of Bestowed Objects

Bestowed objects are unlike any other type of object in Encore, and a special
case is needed in order to properly garbage collect them. In Encore, referencing
counting is used to track the number of references to a particular object. This
partly enables the garbage collector to determine if an object is alive by checking if
an object’s reference count is greater than zero. In order to count these references,
objects are traced by a tracing function that recursively traces any reference to
other objects (Figure 7). A bestowed object’s tracing function needs to trace both
its owner and target fields like any other type of object in Encore. But because
bestowed objects can be shared between multiple actors, this recursive tracing
is not a safe thing to do. The bestowed target is local to the owner, and only
the owner has access to meta information of the target which is needed during
tracing. Recursively tracing the bestowed target will thus cause the program to
crash.

Bestowed Object

Owner Target

Foo

Figure 7: Example structure of a bestowed object.
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The first step in this solution to the garbage collection problem, is to not
recursively trace the bestowed target. This guarantees that the owner is kept
alive, but subobjects of the target do not have the same guarantee. In the
example in Figure 7, foo is a subobject of the bestowed target. The bestowed
owner does not have a reference to either the target or foo. Thankfully the
bestowed object’s tracing function will guarantee that target is kept alive, but
foo will be garbage collected because no recursive tracing is done.

When the owner performs garbage collection it needs to be able to recursively
trace the objects it has bestowed. The owner might not have a reference these
objects, so a reference will need to be saved somewhere in the owner. During the
tracing phase, these objects can then be retrieved and recursively traced. Now
foo is also guaranteed to be kept alive, and when a bestowed object goes out of
scope it can be garbage collected properly.

5.2 Atomic

Atomic enables an actor to send a series of messages to an actor which are
guaranteed to be handled in sequence without interleaving for other messages.
The implementation outline of atomic is to first add parsing and a new AST
node. The implementations of the two atomic designs diverge at this point in the
compiler. The closure version of atomic require mutability of external variables
inside closures. The Optimizer is partly used for this purpose by desugaring
message sends on the atomic target in the atomic body, and in the code generation
closures can be enabled to modify external variables. For atomic mailbox the
actor implementation in the run-time needs to be modified, and there are several
concurrency challenges to solve.

5.2.1 Typechecking

In a well-typed atomic block the only restrictions are related to the target, which
must always be an active or bestowed object. The scope of atomic operations
can vary depending on the implementation (Section 4.2.3). If a new atomic
reference is created at the start of an atomic block, then this reference has some
limitations on its use. The reference has to be local to the current actor, cannot
be assigned to a field, or put in a data structure for example. This is because
the scope of atomic operations are restricted to only the atomic body, and the
atomic reference’s scope is similar to a stack variable which can only be used
within its immediate scope.

Atomic closure performs synchronous method calls on the atomic target, which
needs to be enabled in the typechecker in order to allow synchronous semantics.
Futures are not returned by such message sends on the atomic target, so the
typechecker also has to catch so that operations on futures like get are not
applied on the return value.
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5.2.2 Optimizer

In this implementation of atomic closure, the message sends on the atomic target
inside the atomic body are desugared to method calls, and the desugared body
is then wrapped inside of a closure. The desugared atomic closure block can be
seen in Listing 11.

-- expression :
atomic obj as baz in

baz ! foo ()
baz ! bar ()

end

-- desugared to:
val baz = obj
val closure = λ _ {baz.foo ();

baz.bar ()}
baz ! perform ( closure )

Listing 11: Desugaring atomic closure in the Optimizer.

5.2.3 Code Generation

External variables inside of a closure’s environment are represented as primitives
or pointers to objects in the generated C code (Listing 8). To enable an atomic
closure block to mutate external variables, the objects can be modified to double
pointers, and primitives to single pointers. This enables reassignment of variables
by dereferencing them in every operation inside the closure. The actor that
performs the atomic operation will be blocked while it waits for the atomic target
to run the closure. Because it is blocked, it is safe to dereference the variables
when the atomic target runs the closure, as the variables are guaranteed to still
be alive.

Enabling closure mutability via the method explained above is easier said than
done, the simplest route is to add a new AST node or a type that serves as a flag
in the code generation to dereference these variables. Listing 12 is an example of
the code that will be generated to enable closure mutability. The closure tries to
modify an external integer i, and by having its address in the environment, it can
be dereferenced and reassigned inside the closure. To the left, the reassignment
of i will only be local to the closure itself, while to the right, the reassignment of
i will propagate to the original owner of i.

An atomic mailbox block must be initialized before its body can be executed,
all the required steps can be seen in Listing 13. A simplified version of this,
is to first create a new alias for the atomic target (if applicable), and a new
atomic message queue. An atomic start message then needs to be sent to the
target. This message contains the new message queue as its payload, which the
atomic target will start reading messages from after handling the message. All
the messages sent to the atomic target inside the body now needs to be sent to
the new atomic queue. To do this, the write message queue of the atomic target
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// no closure mutability
struct env
{

int64_t i;
Foo_object * foo;

};

void closure ( struct env* env)
{

int64_t i = env ->i;
Foo_object * foo = env ->foo;
i = baz(foo);

}

// closure mutability
struct env
{

int64_t * i;
Foo_object ** foo;

};

void closure ( struct env* env)
{

int64_t * i = env ->i;
Foo_object ** foo = env ->foo;
*i = baz (* foo);

}

Listing 12: Enabling closure mutability by using the address of variables and
dereferencing them inside the closure.

is reassigned locally to the atomic queue. The body can then be executed. At
the end of the body an atomic end message is sent to signal the end of the atomic
block, allowing the atomic target to start reading from its default message queue
again.

The code generation for atomic mailbox is a bit more involved in the actual
implementation. For example, reassigning the write message queue like in Listing
13, would be a race condition as isolation is broken. To allow for this lazy
reassignment of the write message queue, a shallow copy on the stack can be
created. This shallow copy can be modified without subjecting the implementation
to race conditions.

-- The atomic mailbox block
atomic obj as baz in

baz ! foo ()
end

// initialize atomic
actor* baz = obj;
msgq* q = new_messageq ();
atomic_start_msg (baz , q);
baz ->write = q;

// atomic body
send_foo_message (baz);

// end of atomic
atomic_end_msg (baz);

Listing 13: Simplification of the generated C code for an atomic mailbox block.
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5.2.4 Run-Time

The added run-time functionality for atomic mailbox includes creating two new
types of messages which signify the start and end of an atomic block, and
modifying the actor implementation. Actors also need to be able to handle such
messages, which is done by adding a case for each new message in an actor’s
dispatcher. The actor implementation is modified with a read and a write pointer
to two message queues. Everything that interacts with an actor’s message queue
needs to be modified so it references the right queue. Fortunately, there is only
one instance where the write queue needs to be used, which is when an actor
wants to send a message to an actor. But modifying the actor implementation
affects many places in the run-time, and some of the introduced problems are
not trivial to solve. These problems will be discussed in Section 5.2.5.

5.2.5 Scheduling the Atomic Target

A non-trivial concurrency problem arises when modifying the actor implementa-
tion with a read and write pointer in atomic mailbox. There are a finite number
of cores in a computer, and an actor can only run on a single core at a time. A
scheduling algorithm is used in order to determine when an actor gets to run
on one of the cores. How this scheduling algorithm works is not important, but
atomic mailbox needs to modify when actors are scheduled in order to avoid the
atomic target being scheduled multiple times.

In the example in Listing 14, the size message will be sent to the default message
queue and the append message will be sent to the atomic message queue. If an
actor’s message queue is empty it will be scheduled by the Encore scheduler, and
if both of these message queues are empty, the actor will be scheduled twice. It
is possible that an actor will run on two cores at the same time if it is scheduled
twice. This can lead to messages being handled out of order, and if we are
(un)lucky the whole program could crash.

active class List
var size : int
var head : Node

def size () : int
def append (i : int) : unit

end

def newList () : unit
val l = new List ()
var s = l ! size ()
atomic l

l ! append (42)
end

end

Listing 14: Exemplifies the scheduling problem, some method implementation are
omitted.

There are a lot of assumptions in the run-time that an actor only has one message
queue. The sections of code where multiple message queues can cause problems
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are thus numerous. A lock could be used whenever an actor wants to perform an
operation on one of its message queues, however this comes with a significant
overhead. A more complex scheme can be employed to make sure that an actor
does not get scheduled again if it is already scheduled. This involves atomically
reading the address where the read pointer points to in case it has be updated,
and resolving race conditions when an actor is flagged as being scheduled.

An example of a race condition that is particularly difficult to resolve without
the use of locks can be seen in Listing 15. Enqueuing a message and determining
whether an actor’s message queue is empty is not subject to any race condition.
However with multiple message queues, the if condition at the first comment may
be True, but the actor may be scheduled by another actor before the function
call at the second comment has completed. This is because multiple actors
with different empty atomic message queues may be trying to schedule the same
actor.

void send_message (actor* a, message * m)
{

bool is_empty = messageq_enqueue (a, m);
if ( is_empty )
{

if (! actor_is_scheduled (a)) // 1.
schedule_actor (a); // 2.

}
}

Listing 15: A race condition when sending messages.

6 Evaluation

A set of benchmarks for actor-based languages called Savina [11] are partially
implemented in Encore, and have been used as inspiration to evaluate whether
any patterns can be improved by using bestow or atomic. These benchmarks
tackle common concurrency problems which measures different aspects in an
actor-based system. For example: message passing overhead, message throughput,
and mailbox contention.

A small set of the Savina benchmarks, and a continuation of the iterator in
Section 3.1 will be discussed. The Savina benchmarks includes:

1. Ping: Message delivery overhead.

2. Concurrent Sorted Linked-List: Reader-writer concurrency and inter-
acting with a linear time data structure.

3. Sleeping Barber: Inter-process communication and state synchronization.
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Ping is used for measuring the overhead of message sends when using both of
the constructs. It is a slightly modified version of the Ping Pong benchmark in
Savina that only performs a ping message with no response pong message, as
only the act of sending a message is of interest and a response pong message does
not tell us anything about the message send overhead. The concurrent list is used
to contrast any overhead that bestow has by performing a linear time operation
for every message. The sleeping barber benchmark along with the iterator is
used to evaluate the expressiveness and use-cases of bestow and atomic.

6.1 Expressive Power

The use-case of bestow described in Section 3.1 lays out a scenario where bestow
simplifies patterns. This scenario is when performing a task where the internal
object is the only entity of interest, and without bestow the owner’s interface
would need to be extended with methods of its internal objects. Atomic on the
other hand proves to be a natural way of resolving the non-interleaved pattern.
When only considering the expressiveness of atomic, it is difficult to imagine a
scenario where atomic is a bad choice of achieving non-interleaving of messages.
Determining whether there are any patterns where bestow or atomic prove to
be especially useful is the purpose of this section, and their limitations are also
explored.

6.1.1 Sleeping Barber

This benchmark is a simulation of a barbershop where the barber cuts customers’
hair at a constant speed, but if there are no customers he falls asleep. Customers
arrive at a random rate to the barbershop, if there is a queue and it is not full
the customer waits for its turn, otherwise the customer leaves. If there is no
queue, the customer wakes up the barber to receive a haircut.

Actors need to be able to communicate with each other in order to synchronize.
One could consider using bestow for extracting the barber’s state (awake or
asleep), but it is a bit of an anti-pattern as it would require a new passive class
for that purpose. The barber class itself could be converted to a passive class and
bestow itself. But a more reasonable option is to make the queue that customer’s
wait in a passive class and a field in the barber. This makes it clear that the
barber owns the queue, which it then can bestow and give out to customers.

There is no other great candidate for bestow, however atomic can be used to
create a more streamlined interface for the barber. In Listing 16, the different
required functionality of the barber’s interface can effectively be spread out and
used by a customer to check if a barber is asleep, wake him up, and receive a
haircut. Without atomic, a queue would be needed to synchronize so that only
one customer could communicate with the barber at a time, but with atomic all of
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their messages are non-interleaved. Now all customers instead can communicate
simultaneously.

active class Barber
var isAsleep : bool

def work () : unit
-- cut customer ’s hair

end

def checkOnBarber () : unit
if this. isAsleep then

this. isAsleep = false
println (" Barber awake")
this.work ()

end
end

def sleep () : unit
println (" Barber asleep ")
this. isAsleep = true

end
end

active class Barber
var isAsleep : bool

def work () : unit
-- cut customer ’s hair

end

def isAsleep () : bool
this. asleep

end

def sleep () : unit
println (" Barber asleep ")
this. isAsleep = true

end

def wake () : unit
println (" Barber awake")
this. isAsleep = false
this.work ()

end
end

Listing 16: The Barber’s interface using atomic on the right, and without atomic
on the left.

This allows for more fine-grained concurrency as actors have to wait less and
methods can be simplified so that an external actor has more control in-between
message sends. A customer can now for example choose to leave if the barber
is asleep. Atomic is also particularly useful in this scenario, as a programmer
does not need to implement a synchronization mechanism of their own (like a
queue).

6.1.2 Iterator

The interface aspect of bestow has previously been highlighted with a list iterator
in Section 3.1. A more in depth example is explored in this section to showcase
how tricky this pattern is to implement without bestow. This also allows us to
identify more instances where bestow can be used to simplify patterns, and what a
clever programmer can do to control the level of concurrency in a program.

Having a separate class for the iterator becomes tricky as it cannot directly alias
any of the collection’s internals. It would then require that the collection can
keep track of multiple states when multiple actors want to iterate at the same
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time. A hash map could be used for this purpose, and map different actors to
different iterator states. Another option is converting the iterators into actors.
This would double the overhead of interacting with the collection, as messages
sent to the iterator would need to be sent by the iterator to the collection as
well. The interface of the collection would also need to be larger, as the collection
must mirror the iterator’s interface. Merging the collection and the iterator thus
makes more sense in order to eliminate this overhead.

local class Node[t]
-- omitted

end

-- extended with Iterable
active class List[t]

: Iterable
val head : Node[t]
val map : HashMap [t]

def iter () : int
val key = map.hash ()
map.add(key , this.head)
key

end

def next(key : int) : t
val tmp = map.get(key)
map. replace (key , tmp.next)
tmp.elem

end
end

local class Node[t]
-- omitted

end

active class List[t]
val head : Node[t]

def iter () : Bestowed [Iter]
bestow new Iter(this.head)

end
end

local class Iter[t]
val current : Node[t]

def init(h : Node[t]) : unit
current = h

end

def getNext () : t
val tmp = current
current = tmp.next
tmp.elem

end
end

Listing 17: List and Iter can be decoupled by using bestow, and bestowed objects
can also be used for synchronization.

Bestow allows the iterator to become a passive internal object of the collection, and
both the collection and the iterator can be decoupled from each other. In Listing
17, the List class’ interface when using bestow no longer needs to be cluttered
with the iterator’s interface. This cluttering becomes more problematic the larger
the iterator class’ interface is. Neither does a synchronization mechanism need
to be implemented by the programmer to correctly map different iterator states
to different actors.

The bestow construct enables more fine-grained concurrency patterns. Consider
the difference between creating and bestowing an iterator inside of a list (like
in Listing 17), versus creating an iterator outside the list and bestowing each
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individual node. In the first case every individual operation on the iterator will
be done without any interleaving. While in the second case only operations
on individual nodes will be done without any interleaving. This gives a clever
programmer the ability to control the level of concurrency and synchronization
that is needed in different situations.

6.2 Performance

Bestow and atomic are tools which can be used to interact with an actor at a
higher level of abstraction. While abstraction is often useful in simplifying the
implementation of patterns for a programmer, it can come at the cost of additional
overhead at run-time. Since Encore translates into C code, a C profiling tool can
be used to quantify the overhead. The profiling tool of choice is gprof and the
benchmarks were performed on a machine equipped with an Intel Core i5-5200U
(4 cores, 3MB L3 Cache) processor running at 4×2.20 Ghz combined with 8GB
of RAM, which runs on Ubuntu 14.04 LTS.

Each benchmark has been run 10 times and their gprof output has been averaged.
In gprof’s output, the displayed time is the amount of CPU time spent in user-
mode code (outside the kernel) within the process. As a result, on a multi-core
system the CPU time can actually exceed the real time. The output generated by
gprof has been condensed down to highlight the interesting parts. The function
names has been slightly simplified to increase readability. There is no meta
information other than self and cumulative seconds for run-time functions, which
have been prefixed with enc. Regular methods have their class name as an
identifier followed by the method name and whether if it is a synchronous method
call or asynchronous message send.

6.2.1 Bestow Overhead

The Ping benchmark is used to measure the overhead of performing message sends
on a bestowed object with and without atomic access. This benchmark (Listing
18) represents the maximal overhead of bestow over normal actor messages. The
bestow version of the Ping benchmark converts the active Ping class into a local
passive class, and instead has a new active wrapper class bestow a Ping object
with is used in sendPing.

In Figure 8 both of the cases, with and without atomic can be seen. The left
graph is comparing message sends on actors versus bestowed objects. To no
surprise, bestow comes with an overhead, but the size of the overhead is quite
staggering. In the right graph the message sends are wrapped inside of an atomic
closure block which means that only one message has to be sent to the target.
Everything inside this block can also be performed synchronously by the target.
Using atomic like this, the overhead can be transformed into a performance
improvement instead.
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active class Ping
def ping () : unit

() -- does nothing
end

end

def sendPing (n : int) : unit
val ping = new Ping ()
var numMsgs = 0
while (n > numMsgs ) do

ping ! ping ()
numMsgs += 1

end
end

Listing 18: The Ping benchmark.
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Figure 8: Overhead of message sends on bestowed objects, and using atomic
closure to reduce the impact of the overhead.

To figure out what is the cause of the overhead the output of gprof can be
analyzed. Table 1 is Ping on an actor, and Table 2 is Ping with a bestowed
object, each has performed one million messages. The main difference is that
message sends on bestowed objects needs to perform a lot more costly operations
in the run-time. Specifically, for every message send a new closure environment is
allocated and has to be traced for garbage collection purposes. When performing
ping on a normal actor, none of these things needs to be done. In bestow’s case
a lot more time is hence spent in the run-time to handle these one million new
closure environments that have to be created. Allocating, tracing, and freeing
these closures environments is the cause of the overhead of bestow. The overhead
of the tracing scales proportional to the structure of the bestowed target, for
example the cost of recursively tracing a linked list grows linearly with the list’s
size.

When wrapping the pings inside an atomic closure block, this overhead can be
drastically reduced. Using atomic in Table 3, only one message send to the owner
has to be sent, allowing it to run everything else synchronously. Run-time specific
functions barely register in the profiling because of this. Using atomic mailbox
instead of atomic closure would be negligibly slower than bestow, as two messages
signaling the start and end of an atomic block has to be sent.
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% cumulative self
time seconds seconds calls name

28.57 0.08 0.08 enc_messageq_push
14.29 0.12 0.04 1000000 Ping_ping_async
9.52 0.14 0.02 1000000 Ping_ping_sync
4.76 0.15 0.01 enc_alloc_msg

==== The rest is mostly irrelevant ====

Table 1: Ping with message sends on an active object.

% cumulative self
time seconds seconds name

21.64 0.45 0.45 enc_hashmap_get
6.25 0.58 0.13 enc_opt_next
5.29 0.69 0.11 encore_trace_object
4.57 0.79 0.10 enc_messageq_push

==== Mostly more GC and tracing ====

Table 2: Ping with message sends on a bestowed object.

% cumulative self
time seconds seconds calls name

100.00 0.02 0.02 1 fun_closure0
0.00 0.02 0.00 1 Ping_perform_async
0.00 0.02 0.00 1000000 Ping_ping_sync

Table 3: Ping with message sends on a bestowed object, wrapped inside an atomic
block.

6.2.2 Atomic Overhead

The overhead of both atomic versions is measured using the same Ping benchmark
as in Listing 18. Like bestow, the atomic benchmark also represents the maximal
overhead of atomic over normal actor messages. The atomic version of the Ping
benchmark wraps each ping message inside an atomic block (Listing 19). It should
be noted that atomic mailbox does work properly in the Ping benchmark.

while (n > numMsgs ) do
atomic ping as p in

p ! ping ()
end
numMsgs += 1

end

Listing 19: The atomic version of the Ping benchmark.
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In Figure 9 the overhead for both atomic closure and atomic mailbox can be seen.
Both versions have an overhead compared to message sends on actors. Atomic
closure’s overhead is substantially larger than atomic mailbox’s, and atomic
mailbox’s overhead is smaller than bestow’s. Analyzing the generated C code for
atomic closure reveals that it is mostly identical to bestow. The difference is that
atomic closure is a blocking operation and will thus have to wait for the atomic
target to finish running the closure. In the case of atomic mailbox, the overhead
quite clearly comes from handling new message queues at run-time, in addition
to the two extra messages at the start and end of every atomic block.
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Figure 9: Comparing Ping with versions using atomic.

The gprof output for atomic closure is in Table 4, where one million messages
have been performed. It looks similar to the output of bestow, the main difference
is the time that each operation takes. As mentioned before, the root cause of this
is the blocking nature of atomic closure. One of the actors in the program will
thus be blocked for an extended period of time. Another message will neither be
sent before the earlier message is completed. This means that the target actor
will be descheduled as its message queue will be empty. The scheduler will then
also have to work extra by rescheduling the two actors. As a result the two actors
are spending a long time idle compared to bestow.

The cause of the overhead of atomic mailbox can be seen in Table 5, where one
million messages have been performed. The culprits are indeed the new message
queues and extra messages. To a lesser extent atomic mailbox also suffers from
idling like atomic closure. After each atomic mailbox block the atomic target’s
atomic message queue will be empty, the Encore scheduler will then deschedule
the target even though its default message queue may be full of messages. Due
to the sheer number of messages sent to the atomic target, the time being spent
idle by the target is not as severe.

An intuitive observation is that the overhead of both atomic closure and atomic
mailbox scales proportionally to the number of message sends inside of the atomic
block, and the number of individual atomic blocks. If many messages can be
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concentrated inside of a singular atomic block, the overhead can be negligible.
However, the more individual atomic blocks that exists, the more atomic messages
will need to be sent. And the larger the discrepancy between individual atomic
blocks and number of message sends within them are, the larger the overhead will
be. There thus exists a break-even point between the overhead of atomic closure
and the performance improvement of using method calls instead of message
sends.

% cumulative self
time seconds seconds name

19.87 1.21 1.21 enc_mpmcq_pop
10.18 1.83 0.62 enc_hashmap_get
8.13 2.33 0.50 enc_messageq_markempty
8.05 2.82 0.49 enc_cpu_tick
5.58 3.16 0.34 enc_messageq_push

==== Mostly more GC and tracing ====

Table 4: Ping using atomic closure.

% cumulative self
time seconds seconds name

8.11 0.15 0.15 enc_messageq_push
8.11 0.30 0.15 enc_messageq_markempty
7.57 0.44 0.14 enc_mpmcq_pop
7.57 0.58 0.14 enc_hashmap_get
7.30 0.72 0.14 enc_pool_alloc

==== Mostly more GC and tracing ====

Table 5: Ping using atomic mailbox.

6.2.3 Concurrent Sorted Linked-List

In the Concurrent Sorted Linked-List benchmark, a set of actors generates random
integers which they send to a linked-list actor. The linked-list actor inserts the
integer by the order of increasing value. This operation has an amortized worst-
case time complexity of O(n). As a result, every insertion in the linked-list is
going to progressively take more time.

The purpose of performing this benchmark is to contrast the overhead of bestowed
objects in a program that runs a comparatively expensive operation for every
message send. This will reveal whether or not there are scenarios where the
overhead of bestowed objects is negligible in the overall performance of a program.
In Listing 20 is a simplification of the benchmark.

In this iteration of the benchmark only one actor is spawned to send insert
messages to the list actor. The bestow version of the benchmark (Listing 20)
bestows the internal List object of the ListActor, which the inserter function
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6 EVALUATION 6.3 Discussion

def inserter (n : int) : unit
val l = new ListActor ()
var numMsgs = 0

while (n > numMsgs ) do
l ! insert ( random ())
numMsgs += 1

end
end

local class List
-- omitted

end

active class ListActor
list : List
def insert (i : int) : unit

end

Listing 20: Inserting random integers into a list actor, some method implementa-
tions are omitted.

instead sends messages to. In Figure 10 the result of the benchmark can can be
seen, where each instance has been run 10 times and averaged.

The bestow version of the benchmark does on average run slower. This slow-down
is proportional to the number of messages, but the overall performance of the
benchmark is not severely affected by the use of bestowed objects. There is no
break-even point for bestow like there is for atomic, but the overhead of bestow
can become an issue in some scenarios. One such scenario arises when a larger
number of messages are sent, and the work done by the target actor for each
message is small.
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Figure 10: Comparing the Concurrent Sorted Linked-List benchmark with a
version using bestow.

6.3 Discussion

Bestow is most useful to decouple an actor’s interface with its internal objects
and to produce more fine-grained interfaces. A weakness is when several internal
objects needs to be bestowed. It could easily clutter the interface of the actor if
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every internal object needs a method that returns a specific bestowed object. An
array, heap, or some other convenient data structure could of course be used to
improve this. Another weakness is if the interfaces of an actor and its bestowed
objects overlaps. This conflict the programmer would have to resolve by renaming
methods.

It is always obvious when atomic can be used to synchronize multiple messages.
A lot of the times it can also improve patterns by replacing complicated synchro-
nization mechanisms of the programmer by a simple atomic block on an actor.
An example could be to use atomic to check that a list actor is not empty, and
if so, retrieve the first element in the list. Perhaps surprising, is the fact that
atomic can be used to produce more fine-grained interfaces as well. This can be
accomplished by splitting up large methods into smaller parts, and using atomic
allows an actor to interact with these new methods without any interleaving. As
a result, atomic also makes it possible to react to intermediate results.

As for performance, abstraction often comes at the cost of additional overhead,
yielding worse performance. In its current implementation and on the tested
machine, atomic closure has a break-even point where it can yield better perfor-
mance in cases where there are few individual atomic blocks and more message
sends on the atomic target inside them. Testing has not yielded any case where
bestow or atomic mailbox can be used to improve performance. Though the
overhead of bestow can be negligible in computation intensive scenarios.

7 Related Work

Achieving actor isolation is commonly done by restricting aliasing across actors.
Data is then shared by for example performing a deep copy or transferring the
data’s ownership [5, 12, 13, 14]. Enabling an external actor to safely interact
with internal data of another actor allows for sharing of data and its internal
structure without sacrificing isolation.

Bestowed objects are close in nature to the extension of an actor’s interface
in CEL languages. In E an actor is called a Vat, which has its own thread of
execution called an event loop [3, 8]. All objects encapsulated inside the Vat
can be used as an interface for interacting with the Vat. Bestowing an object
creates a new point of entry for interacting with an actor, similar to eventual
references in E. AmbientTalk also has event-loops for its actors, exporting an
internal object of an actor is similar to eventual references in E and bestowed
objects [3]. Eventual references in E and exporting an internal object in Ambient
talk are different than bestowed objects in that they are not visibly bestowed to
the programmer.

Another technique similar to bestow is based on function passing, where instead
of passing data between entities, functions are sent to collections of data called
silos where they are executed [15]. Bestowed objects could be used as an interface
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to an internal part of the silo. This is similar to performing a message send on a
bestowed object, as it is equivalent to sending a function (closure) to the owner
to execute.

X10 introduces a language construct that is also called atomic for executing
multiple operations in sequence without interleaving [16]. But the semantics
are slightly different as no expression with side effects may be used, such as a
blocking operation. And only local variables and methods can be accessed.

8 Conclusion

The integrated implementation of bestow into Encore shows that it is a useful tool
when simplifying certain programming patterns by allowing an actor’s internal
objects to serve as an extension to its interface. This means that the interface
of the actor and its internal objects can be decoupled and kept separate. The
additional abstraction that bestow provides comes with a large overhead in its
current form, fortunately there are ways to reduce this.

The two atomic implementations offer a built-in synchronization mechanism
for the programmer that can both be used to simplify programming patterns
and sometimes improve performance. The patterns that are improved are those
where messages need to not be interleaved, and when splitting large methods
and interacting with intermediate values is desired. Like bestow, both versions of
atomic come with an overhead, but the testing suggests that atomic closure has
a break-even point where the performance improvement of translating certain
message sends to method calls outweigh the overhead of an atomic block. Reducing
this overhead is also possible, which would increase the cases where atomic closure
could yield a performance improvement.

8.1 Future Work

One major weak point in the bestow implementation is the large overhead of
using the construct. There are multiple avenues to decrease the overhead, one
strategy is to reuse closure environments if they are in the current scope, or move
certain patterns inside the target actor. Because the closure environments of
bestow operations are immutable, it is also possible to statically assign some
variables.

Memory allocation and garbage collection works differently for certain parts of
Encore. Messages are one such part, and elements like closure environments,
and message queues could be allocated inside messages to reduce the garbage
collection overhead. Bundling messages together is also a possibility if the number
of messages can be specified or calculated. This bundling of messages can be
used for both constructs to decrease the number of messages which need to be
sent.
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What the scope of atomic operations should be is not obvious. Three alternatives
have been presented in this thesis: lexical scope, atomic reference, and actor wide.
Only lexical scope has been implemented, but the two other alternatives would
probably prove to be more useful in practice.

Both of the constructs have problems in their current implementation. The two
major problems are the tracing and garbage collection algorithm for bestowed
objects, and resolving race conditions in atomic mailbox when an actor is to be
scheduled to run. The tracing problem has potentially been resolved, but due to
time constraints its correctness has not been tested as rigorously as it could have
been. A first step to solving the scheduling problem is to have the programmer
specify the maximum number of atomic messages. This number could be stored
as a counter in a message which gets decremented for each message handled, and
if the counter is greater than zero it is moved to the front of the actor’s message
queue after it gets descheduled. This would resolve one type of race condition
where messages sent to the atomic message queue no longer need to schedule the
actor.

The work of Castegren and Wrigstad [4] showed that the idea behind bestow
and atomic was sound. This thesis has built upon their work and both imple-
mented the constructs and proved their usefulness in practice. Addressing a few
problems of bestow and atomic would allow for their integration into the main
branch of Encore, where more patterns where the constructs are useful can be
discovered.
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